Summary: | In this paper, we used a method of combining reservoir stimulation technique (RST) with depressurization to investigate the conversion efficiency of marine natural gas hydrate (NGH) reservoirs in the Shenhu area, on the northern slope of the South China Sea, which differ in intrinsic permeability and initial NGH saturation conditions. We also analyzed the influence of the variable-stimulation effect on marine NGH conversion efficiency in different accumulation conditions, providing a reference scheme for improving the NGH conversion efficiency in the Shenhu area. In this work, we performed calculations for the variations in CH4 production rate and cumulative volume of CH4 in different initial NGH saturation, intrinsic permeability, and stimulation effect conditions. Variance analysis and range analysis methods were used to analyze the significance of these key factors and their interaction. Furthermore, we investigated the sensitivity of stimulation effect on NGH conversion efficiency. The simulation results showed that the stimulation effect has a significant influence on NGH conversion efficiency, and the influence of interaction between these three factors was not obvious. Possibly most importantly, we clarified that the sparsely fractured networks (N = 3) had a better effect for higher NGH conversion efficiency under higher saturation conditions. For lower permeability cases, the influence between sparsely (N = 3) and densely (N = 5) fractured networks were similar.
|