Analysis of high energy resolution data of 26Mg(3He,t)26Al reaction

The Gamow-Teller (GT) transition is a powerful tool to study nuclear structure because of its simple form of the operator στ. The structure of 26Al is studied through Gamow-Teller transitions using nuclear charge-exchange reaction. The reaction 26Mg(3He,t)26Al was performed at an incident energy of...

Full description

Bibliographic Details
Main Authors: Win Kalayar, Fujita Yoshitaka, Yeeoo Yee, Fujita Hiro
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2019/11/epjconf_ismd18_08003.pdf
Description
Summary:The Gamow-Teller (GT) transition is a powerful tool to study nuclear structure because of its simple form of the operator στ. The structure of 26Al is studied through Gamow-Teller transitions using nuclear charge-exchange reaction. The reaction 26Mg(3He,t)26Al was performed at an incident energy of 140 MeV/nucleon and scattering angle at and near 0˚. The energy resolution of ΔE = 22 keV allowed us to study many discrete states. Most of the prominent states are suggested that they are excited with ΔL = 0 GT transitions. The GT states were studied up to 18.5 MeV. For the extraction of the B(GT) value, the proportionality between cross section and B(GT) was used. The standard B(GT) values were obtained from the 26Si beta decay, where the mirror symmetry of B(GT) was obtained. The T = 2 GT states are expected in the region Ex ≥ 13.5 MeV. By comparing with the results of 26Mg(t, 3He)26Na reactions, the isospin symmetry of T = 2 GT states is discussed. Due to the high-energy resolution, the decay widths Γ for the states in the Ex > 9 MeV region could be studied. The narrow width of the T = 2 states at 13.592 MeV is explained in terms of isospin selection rules.
ISSN:2100-014X