The effect of azithromycin on ivermectin pharmacokinetics--a population pharmacokinetic model analysis.
BACKGROUND: A recent drug interaction study reported that when azithromycin was administered with the combination of ivermectin and albendazole, there were modest increases in ivermectin pharmacokinetic parameters. Data from this study were reanalyzed to further explore this observation. A compartme...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2008-01-01
|
Series: | PLoS Neglected Tropical Diseases |
Online Access: | http://europepmc.org/articles/PMC2359853?pdf=render |
id |
doaj-2d29df77608f4d15bf3554edffc3633c |
---|---|
record_format |
Article |
spelling |
doaj-2d29df77608f4d15bf3554edffc3633c2020-11-25T02:32:57ZengPublic Library of Science (PLoS)PLoS Neglected Tropical Diseases1935-27271935-27352008-01-0125e23610.1371/journal.pntd.0000236The effect of azithromycin on ivermectin pharmacokinetics--a population pharmacokinetic model analysis.Ahmed El-TahtawyPaul GlueEmma N AndrewsJack MardekianGuy W AmsdenCharles A KnirschBACKGROUND: A recent drug interaction study reported that when azithromycin was administered with the combination of ivermectin and albendazole, there were modest increases in ivermectin pharmacokinetic parameters. Data from this study were reanalyzed to further explore this observation. A compartmental model was developed and 1,000 interaction studies were simulated to explore extreme high ivermectin values that might occur. METHODS AND FINDINGS: A two-compartment pharmacokinetic model with first-order elimination and absorption was developed. The chosen final model had 7 fixed-effect parameters and 8 random-effect parameters. Because some of the modeling parameters and their variances were not distributed normally, a second mixture model was developed to further explore these data. The mixture model had two additional fixed parameters and identified two populations, A (55% of subjects), where there was no change in bioavailability, and B (45% of subjects), where ivermectin bioavailability was increased 37%. Simulations of the data using both models were similar, and showed that the highest ivermectin concentrations fell in the range of 115-201 ng/mL. CONCLUSIONS: This is the first pharmacokinetic model of ivermectin. It demonstrates the utility of two modeling approaches to explore drug interactions, especially where there may be population heterogeneity. The mechanism for the interaction was identified (an increase in bioavailability in one subpopulation). Simulations show that the maximum ivermectin exposures that might be observed during co-administration with azithromycin are below those previously shown to be safe and well tolerated. These analyses support further study of co-administration of azithromycin with the widely used agents ivermectin and albendazole, under field conditions in disease control programs.http://europepmc.org/articles/PMC2359853?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ahmed El-Tahtawy Paul Glue Emma N Andrews Jack Mardekian Guy W Amsden Charles A Knirsch |
spellingShingle |
Ahmed El-Tahtawy Paul Glue Emma N Andrews Jack Mardekian Guy W Amsden Charles A Knirsch The effect of azithromycin on ivermectin pharmacokinetics--a population pharmacokinetic model analysis. PLoS Neglected Tropical Diseases |
author_facet |
Ahmed El-Tahtawy Paul Glue Emma N Andrews Jack Mardekian Guy W Amsden Charles A Knirsch |
author_sort |
Ahmed El-Tahtawy |
title |
The effect of azithromycin on ivermectin pharmacokinetics--a population pharmacokinetic model analysis. |
title_short |
The effect of azithromycin on ivermectin pharmacokinetics--a population pharmacokinetic model analysis. |
title_full |
The effect of azithromycin on ivermectin pharmacokinetics--a population pharmacokinetic model analysis. |
title_fullStr |
The effect of azithromycin on ivermectin pharmacokinetics--a population pharmacokinetic model analysis. |
title_full_unstemmed |
The effect of azithromycin on ivermectin pharmacokinetics--a population pharmacokinetic model analysis. |
title_sort |
effect of azithromycin on ivermectin pharmacokinetics--a population pharmacokinetic model analysis. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Neglected Tropical Diseases |
issn |
1935-2727 1935-2735 |
publishDate |
2008-01-01 |
description |
BACKGROUND: A recent drug interaction study reported that when azithromycin was administered with the combination of ivermectin and albendazole, there were modest increases in ivermectin pharmacokinetic parameters. Data from this study were reanalyzed to further explore this observation. A compartmental model was developed and 1,000 interaction studies were simulated to explore extreme high ivermectin values that might occur. METHODS AND FINDINGS: A two-compartment pharmacokinetic model with first-order elimination and absorption was developed. The chosen final model had 7 fixed-effect parameters and 8 random-effect parameters. Because some of the modeling parameters and their variances were not distributed normally, a second mixture model was developed to further explore these data. The mixture model had two additional fixed parameters and identified two populations, A (55% of subjects), where there was no change in bioavailability, and B (45% of subjects), where ivermectin bioavailability was increased 37%. Simulations of the data using both models were similar, and showed that the highest ivermectin concentrations fell in the range of 115-201 ng/mL. CONCLUSIONS: This is the first pharmacokinetic model of ivermectin. It demonstrates the utility of two modeling approaches to explore drug interactions, especially where there may be population heterogeneity. The mechanism for the interaction was identified (an increase in bioavailability in one subpopulation). Simulations show that the maximum ivermectin exposures that might be observed during co-administration with azithromycin are below those previously shown to be safe and well tolerated. These analyses support further study of co-administration of azithromycin with the widely used agents ivermectin and albendazole, under field conditions in disease control programs. |
url |
http://europepmc.org/articles/PMC2359853?pdf=render |
work_keys_str_mv |
AT ahmedeltahtawy theeffectofazithromycinonivermectinpharmacokineticsapopulationpharmacokineticmodelanalysis AT paulglue theeffectofazithromycinonivermectinpharmacokineticsapopulationpharmacokineticmodelanalysis AT emmanandrews theeffectofazithromycinonivermectinpharmacokineticsapopulationpharmacokineticmodelanalysis AT jackmardekian theeffectofazithromycinonivermectinpharmacokineticsapopulationpharmacokineticmodelanalysis AT guywamsden theeffectofazithromycinonivermectinpharmacokineticsapopulationpharmacokineticmodelanalysis AT charlesaknirsch theeffectofazithromycinonivermectinpharmacokineticsapopulationpharmacokineticmodelanalysis AT ahmedeltahtawy effectofazithromycinonivermectinpharmacokineticsapopulationpharmacokineticmodelanalysis AT paulglue effectofazithromycinonivermectinpharmacokineticsapopulationpharmacokineticmodelanalysis AT emmanandrews effectofazithromycinonivermectinpharmacokineticsapopulationpharmacokineticmodelanalysis AT jackmardekian effectofazithromycinonivermectinpharmacokineticsapopulationpharmacokineticmodelanalysis AT guywamsden effectofazithromycinonivermectinpharmacokineticsapopulationpharmacokineticmodelanalysis AT charlesaknirsch effectofazithromycinonivermectinpharmacokineticsapopulationpharmacokineticmodelanalysis |
_version_ |
1724816594579750912 |