Differential resolvents of minimal order and weight
We will determine the number of powers of α that appear with nonzero coefficient in an α-power linear differential resolvent of smallest possible order of a univariate polynomial P(t) whose coefficients lie in an ordinary differential field and whose distinct roots are differentially independent ove...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2004-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S016117120440235X |
Summary: | We will determine the number of powers of α that appear with nonzero coefficient in an α-power linear differential resolvent of smallest possible order of a univariate polynomial P(t) whose coefficients lie in an ordinary differential field and whose distinct roots are differentially independent over constants. We will then give an upper bound on the weight of an α-resolvent of smallest possible weight. We will then compute the indicial equation, apparent singularities, and Wronskian of the Cockle α-resolvent of a trinomial and finish with a related determinantal formula. |
---|---|
ISSN: | 0161-1712 1687-0425 |