Análisis de imágenes mediante el método de los momentos usando funciones de base continuas a intervalos (PCBF)

Los invariantes generados a partir de momentos extráıdos de una imagen aparecen recurrentemente en la bibliograf́ıa como uno de los métodos más potentes para la descripción de imágenes, y más concretamente de formas. En este art́ıculo se propone el uso de funciones de base continuas a intervalos (PC...

Full description

Bibliographic Details
Main Author: Sergio Domínguez
Format: Article
Language:Spanish
Published: Universitat Politecnica de Valencia 2015-01-01
Series:Revista Iberoamericana de Automática e Informática Industrial RIAI
Subjects:
Online Access:https://polipapers.upv.es/index.php/RIAI/article/view/9410
Description
Summary:Los invariantes generados a partir de momentos extráıdos de una imagen aparecen recurrentemente en la bibliograf́ıa como uno de los métodos más potentes para la descripción de imágenes, y más concretamente de formas. En este art́ıculo se propone el uso de funciones de base continuas a intervalos (PCBF) como alternativa a las bases que se vienen utilizando tradicionalmente en la aplicación de este método, todas ellas continas como puedan ser las muy conocidas de Zernike, Legendre o Tchebichev. El uso de funciones discontinuas se justifica en la naturaleza discontinua de los objetos analizados, en este caso las imágenes: es de sobra conocido que los contornos de los objetos visibles en ellas se caracterizan como discontinuidades en la serie de valores de luminancia cuando nos desplazamos de un lado a otro de dichos contornos. El análisis de tales señales con funciones continuas produce resultados no deseados, como el fenómeno de Gibbs, que pueden ser evitados mediante el uso de funciones como las propuestas, generando mejores aproximaciones a la forma analizada. Adicionalmente, las bases propuestas permiten fácilmente, como se demuestra, la generación de invariantes a rotación, caracteŕıstica altamente deseable para un descriptor de forma, puesto que a priori no se conoce con qué orientación aparecerá esta en la imagen objeto del análisis. La invarianza a traslación y escala se consigue mediante un sencillo proceso de normalización. Se presentan los test que confirman esta hipótesis, comenzando por un análisis del comportamiento de los invariantes ante el ruido en la imagen que permitirá determinar en qué número deben ser extráıdos. A continuación, y una vez definida esta longitud de descripción, se realizan sendos experimentos para determinar el comportamiento de los invariantes propuestos en una tarea de recuperación de imágenes, tanto libres de ruido como corrompidas con distintos grados de ruido gaussiano. Los resultados avalan la hipótesis de idoneidad para la tarea, demostrando que se pueden alcanzar resultados similares a los de la base de referencia, Zernike, utilizando descripciones hasta un 40% más cortas.
ISSN:1697-7912
1697-7920