Use of positron emission tomography for real-time imaging of biodistribution of green tea catechin.

The aim of this study was to achieve real-time imaging of the in vivo behavior of a green tea polyphenol, catechin, by positron emission tomography (PET). Positron-labeled 4″ -[(11)C]methyl-epigallocatechin gallate ([(11)C]Me-EGCG) was orally administered to rats, and its biodistribution was imaged...

Full description

Bibliographic Details
Main Authors: Kosuke Shimizu, Tomohiro Asakawa, Norihiro Harada, Dai Fukumoto, Hideo Tsukada, Tomohiro Asai, Shizuo Yamada, Toshiyuki Kan, Naoto Oku
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3911897?pdf=render
Description
Summary:The aim of this study was to achieve real-time imaging of the in vivo behavior of a green tea polyphenol, catechin, by positron emission tomography (PET). Positron-labeled 4″ -[(11)C]methyl-epigallocatechin gallate ([(11)C]Me-EGCG) was orally administered to rats, and its biodistribution was imaged for 60 min by using a small animal PET system. As the result, images of [(11)C]Me-EGCG passing through the stomach into the small intestines were observed; and a portion of it was quantitatively detected in the liver. On the other hand, intravenous injection of [(11)C]Me-EGCG resulted in a temporal accumulation of the labeled catechin in the liver, after which almost all of it was transferred to the small intestines within 60 min. In the present study, we succeeded in obtaining real-time imaging of the absorption and biodistribution of [(11)C]Me-EGCG with a PET system.
ISSN:1932-6203