Numerical study of blood perfusion and nanoparticle transport in prostate and muscle tumours during intravenous magnetic hyperthermia

In the present work, a two-phase mathematical model of intravenous magnetic (Fe3O4,Fe2O3 or FePt) nanoparticle hyperthermia is considered for the treatment of muscle and prostate tumours. The blood-nanoparticle suspension is described as a non-Newtonian (Quemada) nanofluid, and the effects of thermo...

Full description

Bibliographic Details
Main Authors: Sreedhara Rao Gunakala, Victor M. Job, Sateesh Sakhamuri, P.V.S.N. Murthy, B.V. Chowdary
Format: Article
Language:English
Published: Elsevier 2021-02-01
Series:Alexandria Engineering Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1110016820305305
Description
Summary:In the present work, a two-phase mathematical model of intravenous magnetic (Fe3O4,Fe2O3 or FePt) nanoparticle hyperthermia is considered for the treatment of muscle and prostate tumours. The blood-nanoparticle suspension is described as a non-Newtonian (Quemada) nanofluid, and the effects of thermophoresis and Brownian motion are considered. The blood vessel region is surrounded by a cancerous (muscle or prostate) tumour region, a non-cancerous (muscle or prostate) region and a fat layer. Heat is generated within these tissue regions using an external alternating magnetic field. A numerical solution of the problem is obtained using the mixed finite element method with P2-P1 Taylor-Hood elements. Using this numerical solution, the influence of tumour size, blood vessel radius and haematocrit on blood flow, convective heat transfer, nanoparticle mass transport and blood pressure is examined.
ISSN:1110-0168