Planar Typical Bézier Curves with a Single Curvature Extremum

This paper focuses on planar typical Bézier curves with a single curvature extremum, which is a supplement of typical curves with monotonic curvature by Y. Mineur et al. We have proven that the typical curve has at most one curvature extremum and given a fast calculation formula of the parameter at...

Full description

Bibliographic Details
Main Authors: Chuan He, Gang Zhao, Aizeng Wang, Shaolin Li, Zhanchuan Cai
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/17/2148
Description
Summary:This paper focuses on planar typical Bézier curves with a single curvature extremum, which is a supplement of typical curves with monotonic curvature by Y. Mineur et al. We have proven that the typical curve has at most one curvature extremum and given a fast calculation formula of the parameter at the curvature extremum. This will allow designers to execute a subdivision at the curvature extremum to obtain two pieces of typical curves with monotonic curvature. In addition, we put forward a sufficient condition for typical curve solutions under arbitrary degrees for the G1 interpolation problem. Some numerical experiments are provided to demonstrate the effectiveness and efficiency of our approach.
ISSN:2227-7390