A Spectral Deferred Correction Method for Fractional Differential Equations
A spectral deferred correction method is presented for the initial value problems of fractional differential equations (FDEs) with Caputo derivative. This method is constructed based on the residual function and the error equation deduced from Volterra integral equations equivalent to the FDEs. The...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/139530 |
Summary: | A spectral deferred correction method is presented for the initial value problems of fractional differential equations (FDEs) with Caputo derivative. This method is constructed based on the residual function and the error equation deduced from Volterra integral equations equivalent to the FDEs. The proposed method allows that one can use a relatively few nodes to obtain the high accuracy numerical solutions of FDEs without the penalty of a huge computational cost due to the nonlocality of Caputo derivative. Finally, preliminary numerical experiments are given to verify the efficiency and accuracy of this method. |
---|---|
ISSN: | 1085-3375 1687-0409 |