Mechanical properties of composites with graphene oxide functionalization of either epoxy matrix or curaua fiber reinforcement

In the present work, two types of composites were produced, both reinforced with 30 vol% of curaua fibers (CF). In the first type, only the fiber was functionalized with graphene oxide (GO), producing the GOCF/EM composite. While in the second, only the epoxy matrix (EM) was functionalized, producin...

Full description

Bibliographic Details
Main Authors: Ulisses Oliveira Costa, Lucio Fabio Cassiano Nascimento, Julianna Magalhães Garcia, Wendell Bruno Almeida Bezerra, Garcia Filho Fabio da Costa, Fernanda Santos da Luz, Wagner Anacleto Pinheiro, Sergio Neves Monteiro
Format: Article
Language:English
Published: Elsevier 2020-11-01
Series:Journal of Materials Research and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2238785420317592
Description
Summary:In the present work, two types of composites were produced, both reinforced with 30 vol% of curaua fibers (CF). In the first type, only the fiber was functionalized with graphene oxide (GO), producing the GOCF/EM composite. While in the second, only the epoxy matrix (EM) was functionalized, producing the CF/GOEM composite. The objective of the work was to investigate the influence of functionalization with GO on the tensile properties of these produced composites. In comparison with the non GO-functionalized composite, as control CF/EM, the results revealed an increase in yield strength (64%), tensile strength (40%), Young's modulus (60%) and toughness (28%) of the CF/GOEM composite. The GOCF/EM composites for which the fibers were functionalized with GO also performed better than the CF/EM composite. The ANOVA and Tukey tests confirm this increase. As for ductility, within the standard deviation, no change was observed between samples functionalized by GO and those from the control. For the first time, comparing the results of the composites, it was demonstrated that a polymer matrix functionalized by GO offers superior tensile performance compared to the other types, keeping the same GO concentration in the composite. This fact is corroborated by the analysis of the corresponding fracture mechanisms. Preliminary results of composite with simultaneous functionalization of both fiber and epoxy matrix failed to present superior properties. This might be attributed to high amount of GO, which is apparently not a good reinforcement as the curaua fiber.
ISSN:2238-7854