Benford's Law Applies to Online Social Networks.
Benford's Law states that, in naturally occurring systems, the frequency of numbers' first digits is not evenly distributed. Numbers beginning with a 1 occur roughly 30% of the time, and are six times more common than numbers beginning with a 9. We show that Benford's Law applies to s...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4550407?pdf=render |
id |
doaj-2c77567ff0484ecdbbfec6d10d1541cd |
---|---|
record_format |
Article |
spelling |
doaj-2c77567ff0484ecdbbfec6d10d1541cd2020-11-25T02:04:38ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01108e013516910.1371/journal.pone.0135169Benford's Law Applies to Online Social Networks.Jennifer GolbeckBenford's Law states that, in naturally occurring systems, the frequency of numbers' first digits is not evenly distributed. Numbers beginning with a 1 occur roughly 30% of the time, and are six times more common than numbers beginning with a 9. We show that Benford's Law applies to social and behavioral features of users in online social networks. Using social data from five major social networks (Facebook, Twitter, Google Plus, Pinterest, and LiveJournal), we show that the distribution of first significant digits of friend and follower counts for users in these systems follow Benford's Law. The same is true for the number of posts users make. We extend this to egocentric networks, showing that friend counts among the people in an individual's social network also follows the expected distribution. We discuss how this can be used to detect suspicious or fraudulent activity online and to validate datasets.http://europepmc.org/articles/PMC4550407?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jennifer Golbeck |
spellingShingle |
Jennifer Golbeck Benford's Law Applies to Online Social Networks. PLoS ONE |
author_facet |
Jennifer Golbeck |
author_sort |
Jennifer Golbeck |
title |
Benford's Law Applies to Online Social Networks. |
title_short |
Benford's Law Applies to Online Social Networks. |
title_full |
Benford's Law Applies to Online Social Networks. |
title_fullStr |
Benford's Law Applies to Online Social Networks. |
title_full_unstemmed |
Benford's Law Applies to Online Social Networks. |
title_sort |
benford's law applies to online social networks. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2015-01-01 |
description |
Benford's Law states that, in naturally occurring systems, the frequency of numbers' first digits is not evenly distributed. Numbers beginning with a 1 occur roughly 30% of the time, and are six times more common than numbers beginning with a 9. We show that Benford's Law applies to social and behavioral features of users in online social networks. Using social data from five major social networks (Facebook, Twitter, Google Plus, Pinterest, and LiveJournal), we show that the distribution of first significant digits of friend and follower counts for users in these systems follow Benford's Law. The same is true for the number of posts users make. We extend this to egocentric networks, showing that friend counts among the people in an individual's social network also follows the expected distribution. We discuss how this can be used to detect suspicious or fraudulent activity online and to validate datasets. |
url |
http://europepmc.org/articles/PMC4550407?pdf=render |
work_keys_str_mv |
AT jennifergolbeck benfordslawappliestoonlinesocialnetworks |
_version_ |
1724942000541663232 |