From Equivalent Linear Equations to Gauss-Markov Theorem

<p/> <p>Gauss-Markov theorem reduces linear unbiased estimation to the Least Squares Solution of inconsistent linear equations while the normal equations reduce the second one to the usual solution of consistent linear equations. It is rather surprising that the second algebraic result i...

Full description

Bibliographic Details
Main Author: St&#281;pniak Czes&#322;aw
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2010/259672
Description
Summary:<p/> <p>Gauss-Markov theorem reduces linear unbiased estimation to the Least Squares Solution of inconsistent linear equations while the normal equations reduce the second one to the usual solution of consistent linear equations. It is rather surprising that the second algebraic result is usually derived in a differential way. To avoid this dissonance, we state and use an auxiliary result on equivalence of two systems of linear equations. This places us in a convenient position to attack on the main problems in the Gauss-Markov model in an easy way.</p>
ISSN:1025-5834
1029-242X