Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications
Let \(n\in\mathbb{N}^{*}\), and \(N\geq n\) be an integer. We study the spectrum of discrete linear \(2n\)-th order eigenvalue problems \[\begin{cases}\sum_{k=0}^{n}(-1)^{k}\Delta^{2k}u(t-k) = \lambda u(t) ,\quad & t\in[1, N]_{\mathbb{Z}}, \\ \Delta^{i}u(-(n-1))=\Delta^{i}u(N-(n-1)),\quad &...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2021-07-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | https://www.opuscula.agh.edu.pl/vol41/4/art/opuscula_math_4124.pdf |
id |
doaj-2c6bc354a6bd46fdb58ab484529dfb2d |
---|---|
record_format |
Article |
spelling |
doaj-2c6bc354a6bd46fdb58ab484529dfb2d2021-07-09T22:48:13ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742021-07-01414489507https://doi.org/10.7494/OpMath.2021.41.4.4894124Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applicationsAbdelrachid El Amrouss0https://orcid.org/0000-0003-3536-398XOmar Hammouti1https://orcid.org/0000-0002-6065-1361Mohammed First University, Department of Mathematics, Oujda, MoroccoMohammed First University, Department of Mathematics, Oujda, MoroccoLet \(n\in\mathbb{N}^{*}\), and \(N\geq n\) be an integer. We study the spectrum of discrete linear \(2n\)-th order eigenvalue problems \[\begin{cases}\sum_{k=0}^{n}(-1)^{k}\Delta^{2k}u(t-k) = \lambda u(t) ,\quad & t\in[1, N]_{\mathbb{Z}}, \\ \Delta^{i}u(-(n-1))=\Delta^{i}u(N-(n-1)),\quad & i\in[0, 2n-1]_{\mathbb{Z}},\end{cases}\] where \(\lambda\) is a parameter. As an application of this spectrum result, we show the existence of a solution of discrete nonlinear \(2n\)-th order problems by applying the variational methods and critical point theory.https://www.opuscula.agh.edu.pl/vol41/4/art/opuscula_math_4124.pdfdiscrete boundary value problems2n-th ordervariational methodscritical point theory |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Abdelrachid El Amrouss Omar Hammouti |
spellingShingle |
Abdelrachid El Amrouss Omar Hammouti Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications Opuscula Mathematica discrete boundary value problems 2n-th order variational methods critical point theory |
author_facet |
Abdelrachid El Amrouss Omar Hammouti |
author_sort |
Abdelrachid El Amrouss |
title |
Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications |
title_short |
Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications |
title_full |
Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications |
title_fullStr |
Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications |
title_full_unstemmed |
Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications |
title_sort |
spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications |
publisher |
AGH Univeristy of Science and Technology Press |
series |
Opuscula Mathematica |
issn |
1232-9274 |
publishDate |
2021-07-01 |
description |
Let \(n\in\mathbb{N}^{*}\), and \(N\geq n\) be an integer. We study the spectrum of discrete linear \(2n\)-th order eigenvalue problems \[\begin{cases}\sum_{k=0}^{n}(-1)^{k}\Delta^{2k}u(t-k) = \lambda u(t) ,\quad & t\in[1, N]_{\mathbb{Z}}, \\ \Delta^{i}u(-(n-1))=\Delta^{i}u(N-(n-1)),\quad & i\in[0, 2n-1]_{\mathbb{Z}},\end{cases}\] where \(\lambda\) is a parameter. As an application of this spectrum result, we show the existence of a solution of discrete nonlinear \(2n\)-th order problems by applying the variational methods and critical point theory. |
topic |
discrete boundary value problems 2n-th order variational methods critical point theory |
url |
https://www.opuscula.agh.edu.pl/vol41/4/art/opuscula_math_4124.pdf |
work_keys_str_mv |
AT abdelrachidelamrouss spectrumofdiscrete2nthorderdifferenceoperatorwithperiodicboundaryconditionsanditsapplications AT omarhammouti spectrumofdiscrete2nthorderdifferenceoperatorwithperiodicboundaryconditionsanditsapplications |
_version_ |
1721310017659863040 |