Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications

Let \(n\in\mathbb{N}^{*}\), and \(N\geq n\) be an integer. We study the spectrum of discrete linear \(2n\)-th order eigenvalue problems \[\begin{cases}\sum_{k=0}^{n}(-1)^{k}\Delta^{2k}u(t-k) = \lambda u(t) ,\quad & t\in[1, N]_{\mathbb{Z}}, \\ \Delta^{i}u(-(n-1))=\Delta^{i}u(N-(n-1)),\quad &...

Full description

Bibliographic Details
Main Authors: Abdelrachid El Amrouss, Omar Hammouti
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2021-07-01
Series:Opuscula Mathematica
Subjects:
Online Access:https://www.opuscula.agh.edu.pl/vol41/4/art/opuscula_math_4124.pdf
id doaj-2c6bc354a6bd46fdb58ab484529dfb2d
record_format Article
spelling doaj-2c6bc354a6bd46fdb58ab484529dfb2d2021-07-09T22:48:13ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742021-07-01414489507https://doi.org/10.7494/OpMath.2021.41.4.4894124Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applicationsAbdelrachid El Amrouss0https://orcid.org/0000-0003-3536-398XOmar Hammouti1https://orcid.org/0000-0002-6065-1361Mohammed First University, Department of Mathematics, Oujda, MoroccoMohammed First University, Department of Mathematics, Oujda, MoroccoLet \(n\in\mathbb{N}^{*}\), and \(N\geq n\) be an integer. We study the spectrum of discrete linear \(2n\)-th order eigenvalue problems \[\begin{cases}\sum_{k=0}^{n}(-1)^{k}\Delta^{2k}u(t-k) = \lambda u(t) ,\quad & t\in[1, N]_{\mathbb{Z}}, \\ \Delta^{i}u(-(n-1))=\Delta^{i}u(N-(n-1)),\quad & i\in[0, 2n-1]_{\mathbb{Z}},\end{cases}\] where \(\lambda\) is a parameter. As an application of this spectrum result, we show the existence of a solution of discrete nonlinear \(2n\)-th order problems by applying the variational methods and critical point theory.https://www.opuscula.agh.edu.pl/vol41/4/art/opuscula_math_4124.pdfdiscrete boundary value problems2n-th ordervariational methodscritical point theory
collection DOAJ
language English
format Article
sources DOAJ
author Abdelrachid El Amrouss
Omar Hammouti
spellingShingle Abdelrachid El Amrouss
Omar Hammouti
Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications
Opuscula Mathematica
discrete boundary value problems
2n-th order
variational methods
critical point theory
author_facet Abdelrachid El Amrouss
Omar Hammouti
author_sort Abdelrachid El Amrouss
title Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications
title_short Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications
title_full Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications
title_fullStr Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications
title_full_unstemmed Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications
title_sort spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications
publisher AGH Univeristy of Science and Technology Press
series Opuscula Mathematica
issn 1232-9274
publishDate 2021-07-01
description Let \(n\in\mathbb{N}^{*}\), and \(N\geq n\) be an integer. We study the spectrum of discrete linear \(2n\)-th order eigenvalue problems \[\begin{cases}\sum_{k=0}^{n}(-1)^{k}\Delta^{2k}u(t-k) = \lambda u(t) ,\quad & t\in[1, N]_{\mathbb{Z}}, \\ \Delta^{i}u(-(n-1))=\Delta^{i}u(N-(n-1)),\quad & i\in[0, 2n-1]_{\mathbb{Z}},\end{cases}\] where \(\lambda\) is a parameter. As an application of this spectrum result, we show the existence of a solution of discrete nonlinear \(2n\)-th order problems by applying the variational methods and critical point theory.
topic discrete boundary value problems
2n-th order
variational methods
critical point theory
url https://www.opuscula.agh.edu.pl/vol41/4/art/opuscula_math_4124.pdf
work_keys_str_mv AT abdelrachidelamrouss spectrumofdiscrete2nthorderdifferenceoperatorwithperiodicboundaryconditionsanditsapplications
AT omarhammouti spectrumofdiscrete2nthorderdifferenceoperatorwithperiodicboundaryconditionsanditsapplications
_version_ 1721310017659863040