Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions
For an arbitrary open subset U⊂ℝd or U⊆ℂd and a continuous function v:U→]0,∞[ we show that the space hv0(U) of weighed harmonic functions is almost isometric to a (closed) subspace of c0, thus extending a theorem due to Bonet and Wolf for spaces of holomorphic functions Hv0(U) on open sets U⊂ℂd. Ins...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Journal of Function Spaces and Applications |
Online Access: | http://dx.doi.org/10.1155/2013/178460 |
id |
doaj-2c377cb7b67146e7bc55ac56ab27fa0a |
---|---|
record_format |
Article |
spelling |
doaj-2c377cb7b67146e7bc55ac56ab27fa0a2020-11-24T21:46:44ZengHindawi LimitedJournal of Function Spaces and Applications0972-68021758-49652013-01-01201310.1155/2013/178460178460Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic FunctionsEnrique Jordá0Ana María Zarco1Departamento de Matemática Aplicada, E. Politécnica Superior de Alcoy, Universidad Politécnica de Valencia, Plaza Ferrándiz y Carbonell 2, 03801 Alcoy, SpainDepartamento de Matemática Aplicada, E. Politécnica Superior de Alcoy, Universidad Politécnica de Valencia, Plaza Ferrándiz y Carbonell 2, 03801 Alcoy, SpainFor an arbitrary open subset U⊂ℝd or U⊆ℂd and a continuous function v:U→]0,∞[ we show that the space hv0(U) of weighed harmonic functions is almost isometric to a (closed) subspace of c0, thus extending a theorem due to Bonet and Wolf for spaces of holomorphic functions Hv0(U) on open sets U⊂ℂd. Inspired by recent work of Boyd and Rueda, we characterize in terms of the extremal points of the dual of hv0(U) when hv0(U) is isometric to a subspace of c0. Some geometric conditions on an open set U⊆ℂd and convexity conditions on a weight v on U are given to ensure that neither Hv0(U) nor hv0(U) are rotund.http://dx.doi.org/10.1155/2013/178460 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Enrique Jordá Ana María Zarco |
spellingShingle |
Enrique Jordá Ana María Zarco Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions Journal of Function Spaces and Applications |
author_facet |
Enrique Jordá Ana María Zarco |
author_sort |
Enrique Jordá |
title |
Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions |
title_short |
Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions |
title_full |
Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions |
title_fullStr |
Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions |
title_full_unstemmed |
Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions |
title_sort |
isomorphisms on weighed banach spaces of harmonic and holomorphic functions |
publisher |
Hindawi Limited |
series |
Journal of Function Spaces and Applications |
issn |
0972-6802 1758-4965 |
publishDate |
2013-01-01 |
description |
For an arbitrary open subset U⊂ℝd or U⊆ℂd and a continuous function v:U→]0,∞[ we show that the space hv0(U) of weighed harmonic functions is almost isometric to a (closed) subspace of c0, thus extending a theorem due to Bonet and Wolf for spaces of holomorphic functions Hv0(U) on open sets U⊂ℂd. Inspired by recent work of Boyd and Rueda, we characterize in terms of the extremal points of the dual of hv0(U) when hv0(U) is isometric to a subspace of c0. Some geometric conditions on an open set U⊆ℂd and convexity conditions on a weight v on U are given to ensure that neither Hv0(U) nor hv0(U) are rotund. |
url |
http://dx.doi.org/10.1155/2013/178460 |
work_keys_str_mv |
AT enriquejorda isomorphismsonweighedbanachspacesofharmonicandholomorphicfunctions AT anamariazarco isomorphismsonweighedbanachspacesofharmonicandholomorphicfunctions |
_version_ |
1725900260602019840 |