Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions

For an arbitrary open subset U⊂ℝd or U⊆ℂd and a continuous function v:U→]0,∞[ we show that the space hv0(U) of weighed harmonic functions is almost isometric to a (closed) subspace of c0, thus extending a theorem due to Bonet and Wolf for spaces of holomorphic functions Hv0(U) on open sets U⊂ℂd. Ins...

Full description

Bibliographic Details
Main Authors: Enrique Jordá, Ana María Zarco
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2013/178460
id doaj-2c377cb7b67146e7bc55ac56ab27fa0a
record_format Article
spelling doaj-2c377cb7b67146e7bc55ac56ab27fa0a2020-11-24T21:46:44ZengHindawi LimitedJournal of Function Spaces and Applications0972-68021758-49652013-01-01201310.1155/2013/178460178460Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic FunctionsEnrique Jordá0Ana María Zarco1Departamento de Matemática Aplicada, E. Politécnica Superior de Alcoy, Universidad Politécnica de Valencia, Plaza Ferrándiz y Carbonell 2, 03801 Alcoy, SpainDepartamento de Matemática Aplicada, E. Politécnica Superior de Alcoy, Universidad Politécnica de Valencia, Plaza Ferrándiz y Carbonell 2, 03801 Alcoy, SpainFor an arbitrary open subset U⊂ℝd or U⊆ℂd and a continuous function v:U→]0,∞[ we show that the space hv0(U) of weighed harmonic functions is almost isometric to a (closed) subspace of c0, thus extending a theorem due to Bonet and Wolf for spaces of holomorphic functions Hv0(U) on open sets U⊂ℂd. Inspired by recent work of Boyd and Rueda, we characterize in terms of the extremal points of the dual of hv0(U) when hv0(U) is isometric to a subspace of c0. Some geometric conditions on an open set U⊆ℂd and convexity conditions on a weight v on U are given to ensure that neither Hv0(U) nor hv0(U) are rotund.http://dx.doi.org/10.1155/2013/178460
collection DOAJ
language English
format Article
sources DOAJ
author Enrique Jordá
Ana María Zarco
spellingShingle Enrique Jordá
Ana María Zarco
Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions
Journal of Function Spaces and Applications
author_facet Enrique Jordá
Ana María Zarco
author_sort Enrique Jordá
title Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions
title_short Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions
title_full Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions
title_fullStr Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions
title_full_unstemmed Isomorphisms on Weighed Banach Spaces of Harmonic and Holomorphic Functions
title_sort isomorphisms on weighed banach spaces of harmonic and holomorphic functions
publisher Hindawi Limited
series Journal of Function Spaces and Applications
issn 0972-6802
1758-4965
publishDate 2013-01-01
description For an arbitrary open subset U⊂ℝd or U⊆ℂd and a continuous function v:U→]0,∞[ we show that the space hv0(U) of weighed harmonic functions is almost isometric to a (closed) subspace of c0, thus extending a theorem due to Bonet and Wolf for spaces of holomorphic functions Hv0(U) on open sets U⊂ℂd. Inspired by recent work of Boyd and Rueda, we characterize in terms of the extremal points of the dual of hv0(U) when hv0(U) is isometric to a subspace of c0. Some geometric conditions on an open set U⊆ℂd and convexity conditions on a weight v on U are given to ensure that neither Hv0(U) nor hv0(U) are rotund.
url http://dx.doi.org/10.1155/2013/178460
work_keys_str_mv AT enriquejorda isomorphismsonweighedbanachspacesofharmonicandholomorphicfunctions
AT anamariazarco isomorphismsonweighedbanachspacesofharmonicandholomorphicfunctions
_version_ 1725900260602019840