Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model
Dominant intermediate Charcot-Marie-Tooth disease type C (DI-CMTC) is a dominantly inherited neuropathy that has been classified primarily based on motor conduction velocity tests but is now known to involve axonal and demyelination features. DI-CMTC is linked to tyrosyl-tRNA synthetase (YARS)-assoc...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer Medknow Publications
2017-01-01
|
Series: | Neural Regeneration Research |
Subjects: | |
Online Access: | http://www.nrronline.org/article.asp?issn=1673-5374;year=2017;volume=12;issue=3;spage=486;epage=492;aulast=Lee |
id |
doaj-2c268bb2e4a74d2dae335c722dc6dbe1 |
---|---|
record_format |
Article |
spelling |
doaj-2c268bb2e4a74d2dae335c722dc6dbe12020-11-25T04:02:12ZengWolters Kluwer Medknow PublicationsNeural Regeneration Research1673-53742017-01-0112348649210.4103/1673-5374.202920Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse modelSeoJin LeeSandesh PanthiHyun Woo JoJaeyoung ChoMin-Sik KimNa Young JeongJunyang JungYoungbuhm HuhDominant intermediate Charcot-Marie-Tooth disease type C (DI-CMTC) is a dominantly inherited neuropathy that has been classified primarily based on motor conduction velocity tests but is now known to involve axonal and demyelination features. DI-CMTC is linked to tyrosyl-tRNA synthetase (YARS)-associated neuropathies, which are caused by E196K and G41R missense mutations and a single de novo deletion (153-156delVKQV). It is well-established that these YARS mutations induce neuronal dysfunction, morphological symptoms involving axonal degeneration, and impaired motor performance. The present study is the first to describe a novel mouse model of YARS-mutation-induced neuropathy involving a neuron-specific promoter with a deleted mitochondrial targeting sequence that inhibits the expression of YARS protein in the mitochondria. An adenovirus vector system and in vivo techniques were utilized to express YARS fusion proteins with a Flag-tag in the spinal cord, peripheral axons, and dorsal root ganglia. Following transfection of YARS-expressing viruses, the distributions of wild-type (WT) YARS and E196K mutant proteins were compared in all expressed regions; G41R was not expressed. The proportion of Flag/green fluorescent protein (GFP) double-positive signaling in the E196K mutant-type mice did not significantly differ from that of WT mice in dorsal root ganglion neurons. All adenovirus genes, and even the empty vector without the YARS gene, exhibited GFP-positive signaling in the ventral horn of the spinal cord because GFP in an adenovirus vector is driven by a cytomegalovirus promoter. The present study demonstrated that anatomical differences in tissue can lead to dissimilar expressions of YARS genes. Thus, use of this novel animal model will provide data regarding distributional defects between mutant and WT genes in neurons, the DI-CMTC phenotype, and potential treatment approaches for this disease.http://www.nrronline.org/article.asp?issn=1673-5374;year=2017;volume=12;issue=3;spage=486;epage=492;aulast=Leenerve regeneration; tyrosyl-tRNA synthetase; YARS-associated neuropathy; YARS mutation; Charcot-Marie-Tooth Disease; adenoviral vector-mediated mouse models; neural regeneration |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
SeoJin Lee Sandesh Panthi Hyun Woo Jo Jaeyoung Cho Min-Sik Kim Na Young Jeong Junyang Jung Youngbuhm Huh |
spellingShingle |
SeoJin Lee Sandesh Panthi Hyun Woo Jo Jaeyoung Cho Min-Sik Kim Na Young Jeong Junyang Jung Youngbuhm Huh Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model Neural Regeneration Research nerve regeneration; tyrosyl-tRNA synthetase; YARS-associated neuropathy; YARS mutation; Charcot-Marie-Tooth Disease; adenoviral vector-mediated mouse models; neural regeneration |
author_facet |
SeoJin Lee Sandesh Panthi Hyun Woo Jo Jaeyoung Cho Min-Sik Kim Na Young Jeong Junyang Jung Youngbuhm Huh |
author_sort |
SeoJin Lee |
title |
Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model |
title_short |
Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model |
title_full |
Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model |
title_fullStr |
Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model |
title_full_unstemmed |
Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model |
title_sort |
anatomical distributional defects in mutant genes associated with dominant intermediate charcot-marie-tooth disease type c in an adenovirus-mediated mouse model |
publisher |
Wolters Kluwer Medknow Publications |
series |
Neural Regeneration Research |
issn |
1673-5374 |
publishDate |
2017-01-01 |
description |
Dominant intermediate Charcot-Marie-Tooth disease type C (DI-CMTC) is a dominantly inherited neuropathy that has been classified primarily based on motor conduction velocity tests but is now known to involve axonal and demyelination features. DI-CMTC is linked to tyrosyl-tRNA synthetase (YARS)-associated neuropathies, which are caused by E196K and G41R missense mutations and a single de novo deletion (153-156delVKQV). It is well-established that these YARS mutations induce neuronal dysfunction, morphological symptoms involving axonal degeneration, and impaired motor performance. The present study is the first to describe a novel mouse model of YARS-mutation-induced neuropathy involving a neuron-specific promoter with a deleted mitochondrial targeting sequence that inhibits the expression of YARS protein in the mitochondria. An adenovirus vector system and in vivo techniques were utilized to express YARS fusion proteins with a Flag-tag in the spinal cord, peripheral axons, and dorsal root ganglia. Following transfection of YARS-expressing viruses, the distributions of wild-type (WT) YARS and E196K mutant proteins were compared in all expressed regions; G41R was not expressed. The proportion of Flag/green fluorescent protein (GFP) double-positive signaling in the E196K mutant-type mice did not significantly differ from that of WT mice in dorsal root ganglion neurons. All adenovirus genes, and even the empty vector without the YARS gene, exhibited GFP-positive signaling in the ventral horn of the spinal cord because GFP in an adenovirus vector is driven by a cytomegalovirus promoter. The present study demonstrated that anatomical differences in tissue can lead to dissimilar expressions of YARS genes. Thus, use of this novel animal model will provide data regarding distributional defects between mutant and WT genes in neurons, the DI-CMTC phenotype, and potential treatment approaches for this disease. |
topic |
nerve regeneration; tyrosyl-tRNA synthetase; YARS-associated neuropathy; YARS mutation; Charcot-Marie-Tooth Disease; adenoviral vector-mediated mouse models; neural regeneration |
url |
http://www.nrronline.org/article.asp?issn=1673-5374;year=2017;volume=12;issue=3;spage=486;epage=492;aulast=Lee |
work_keys_str_mv |
AT seojinlee anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT sandeshpanthi anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT hyunwoojo anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT jaeyoungcho anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT minsikkim anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT nayoungjeong anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT junyangjung anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT youngbuhmhuh anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel |
_version_ |
1724443949680033792 |