A Study on Identification of Development Status of MASS Technologies and Directions of Improvement

The introduction of the maritime autonomous surface ship (MASS) to the maritime industry will open up a new era and bring about a new paradigm shift in terms of cost efficiency, maritime accidents, and human resources. Various studies are currently being conducted to realize the MASS. Understanding...

Full description

Bibliographic Details
Main Authors: Chong-Ju Chae, Mingyu Kim, Hyung-Ju Kim
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/13/4564
Description
Summary:The introduction of the maritime autonomous surface ship (MASS) to the maritime industry will open up a new era and bring about a new paradigm shift in terms of cost efficiency, maritime accidents, and human resources. Various studies are currently being conducted to realize the MASS. Understanding the scope and direction of these studies will be of great help for future MASS research. In this study, the current development status of technologies for autonomous ships is identified, and considerations and directions of improvement are suggested for six major research fields that cover all technological issues of MASS. Firstly, the results of the regulatory scoping exercise (RSE) on the International Maritime Organization (IMO) conventions to accept MASSs are identified; in particular, human elements are identified as vital issues to be considered for the design and operation of MASSs. Secondly, various studies on the decision-making system are identified, and the future direction is suggested. Thirdly, in terms of ship design and propulsion system, design changes for autonomous cargo ships are investigated, with their potential impacts to be considered. Fourthly, the communication system will need to be robust and supported by multiple systems to minimize potential risk with third-party infrastructures, and suitable protection of systems, networks, and data will be required as an integral part of the safety system for cybersecurity. Fifthly, issues of maintenance and repair are identified, with a maintenance strategy to be considered. Lastly, hazard analysis of the autonomous ship is explored, and system-theoretic process analysis (STPA) and the functional resonance analysis method (FRAM) are identified as the most representative new methods that can be used for hazard analysis of autonomous ships.
ISSN:2076-3417