A natural Frenet frame for null curves on the lightlike cone in Minkowski space R 2 4 $\mathbb{R} ^{4}_{2}$

Abstract In this paper, we investigate the representation of curves on the lightlike cone Q 2 3 $\mathbb {Q}^{3}_{2}$ in Minkowski space R 2 4 $\mathbb {R}^{4}_{2}$ by structure functions. In addition, with this representation, we classify all of the null curves on the lightlike cone Q 2 3 $\mathbb...

Full description

Bibliographic Details
Main Authors: Nemat Abazari, Martin Bohner, Ilgin Sağer, Alireza Sedaghatdoost, Yusuf Yayli
Format: Article
Language:English
Published: SpringerOpen 2020-10-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-020-02500-y
id doaj-2bfcbdaacdbc4bcf85e1c73cbfc8d7b6
record_format Article
spelling doaj-2bfcbdaacdbc4bcf85e1c73cbfc8d7b62020-11-25T04:00:26ZengSpringerOpenJournal of Inequalities and Applications1029-242X2020-10-012020111810.1186/s13660-020-02500-yA natural Frenet frame for null curves on the lightlike cone in Minkowski space R 2 4 $\mathbb{R} ^{4}_{2}$Nemat Abazari0Martin Bohner1Ilgin Sağer2Alireza Sedaghatdoost3Yusuf Yayli4Department of Mathematics and Applications, University of Mohaghegh ArdabiliDepartment of Mathematics and Statistics, Missouri S&TDepartment of Mathematics and Computer Science, University of Missouri—St. LouisDepartment of Mathematics and Applications, University of Mohaghegh ArdabiliDepartment of Mathematics, Faculty of Science, Ankara UniversityAbstract In this paper, we investigate the representation of curves on the lightlike cone Q 2 3 $\mathbb {Q}^{3}_{2}$ in Minkowski space R 2 4 $\mathbb {R}^{4}_{2}$ by structure functions. In addition, with this representation, we classify all of the null curves on the lightlike cone Q 2 3 $\mathbb {Q}^{3}_{2}$ in four types, and we obtain a natural Frenet frame for these null curves. Furthermore, for this natural Frenet frame, we calculate curvature functions of a null curve, especially the curvature function κ 2 = 0 $\kappa _{2}=0$ , and we show that any null curve on the lightlike cone is a helix. Finally, we find all curves with constant curvature functions.http://link.springer.com/article/10.1186/s13660-020-02500-yConstant curvature functionHelixLightlike coneNatural Frenet frameNull curve
collection DOAJ
language English
format Article
sources DOAJ
author Nemat Abazari
Martin Bohner
Ilgin Sağer
Alireza Sedaghatdoost
Yusuf Yayli
spellingShingle Nemat Abazari
Martin Bohner
Ilgin Sağer
Alireza Sedaghatdoost
Yusuf Yayli
A natural Frenet frame for null curves on the lightlike cone in Minkowski space R 2 4 $\mathbb{R} ^{4}_{2}$
Journal of Inequalities and Applications
Constant curvature function
Helix
Lightlike cone
Natural Frenet frame
Null curve
author_facet Nemat Abazari
Martin Bohner
Ilgin Sağer
Alireza Sedaghatdoost
Yusuf Yayli
author_sort Nemat Abazari
title A natural Frenet frame for null curves on the lightlike cone in Minkowski space R 2 4 $\mathbb{R} ^{4}_{2}$
title_short A natural Frenet frame for null curves on the lightlike cone in Minkowski space R 2 4 $\mathbb{R} ^{4}_{2}$
title_full A natural Frenet frame for null curves on the lightlike cone in Minkowski space R 2 4 $\mathbb{R} ^{4}_{2}$
title_fullStr A natural Frenet frame for null curves on the lightlike cone in Minkowski space R 2 4 $\mathbb{R} ^{4}_{2}$
title_full_unstemmed A natural Frenet frame for null curves on the lightlike cone in Minkowski space R 2 4 $\mathbb{R} ^{4}_{2}$
title_sort natural frenet frame for null curves on the lightlike cone in minkowski space r 2 4 $\mathbb{r} ^{4}_{2}$
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2020-10-01
description Abstract In this paper, we investigate the representation of curves on the lightlike cone Q 2 3 $\mathbb {Q}^{3}_{2}$ in Minkowski space R 2 4 $\mathbb {R}^{4}_{2}$ by structure functions. In addition, with this representation, we classify all of the null curves on the lightlike cone Q 2 3 $\mathbb {Q}^{3}_{2}$ in four types, and we obtain a natural Frenet frame for these null curves. Furthermore, for this natural Frenet frame, we calculate curvature functions of a null curve, especially the curvature function κ 2 = 0 $\kappa _{2}=0$ , and we show that any null curve on the lightlike cone is a helix. Finally, we find all curves with constant curvature functions.
topic Constant curvature function
Helix
Lightlike cone
Natural Frenet frame
Null curve
url http://link.springer.com/article/10.1186/s13660-020-02500-y
work_keys_str_mv AT nematabazari anaturalfrenetframefornullcurvesonthelightlikeconeinminkowskispacer24mathbbr42
AT martinbohner anaturalfrenetframefornullcurvesonthelightlikeconeinminkowskispacer24mathbbr42
AT ilginsager anaturalfrenetframefornullcurvesonthelightlikeconeinminkowskispacer24mathbbr42
AT alirezasedaghatdoost anaturalfrenetframefornullcurvesonthelightlikeconeinminkowskispacer24mathbbr42
AT yusufyayli anaturalfrenetframefornullcurvesonthelightlikeconeinminkowskispacer24mathbbr42
AT nematabazari naturalfrenetframefornullcurvesonthelightlikeconeinminkowskispacer24mathbbr42
AT martinbohner naturalfrenetframefornullcurvesonthelightlikeconeinminkowskispacer24mathbbr42
AT ilginsager naturalfrenetframefornullcurvesonthelightlikeconeinminkowskispacer24mathbbr42
AT alirezasedaghatdoost naturalfrenetframefornullcurvesonthelightlikeconeinminkowskispacer24mathbbr42
AT yusufyayli naturalfrenetframefornullcurvesonthelightlikeconeinminkowskispacer24mathbbr42
_version_ 1724450609066672128