Summary: | A harmony search (HS) algorithm for solving high-dimensional multimodal optimization problems (named DIHS) was proposed in 2015 and showed good performance, in which a dynamic-dimensionality-reduction strategy is employed to maintain a high update success rate of harmony memory (HM). However, an extreme assumption was adopted in the DIHS that is not reasonable, and its analysis for the update success rate is not sufficiently accurate. In this study, we reanalyzed the update success rate of HS and now present a more valid method for analyzing the update success rate of HS. In the new analysis, take-k and take-all strategies that are employed to generate new solutions are compared to the update success rate, and the average convergence rate of algorithms is also analyzed. The experimental results demonstrate that the HS based on the take-k strategy is efficient and effective at solving some complex high-dimensional optimization problems.
|