Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography
Rongzuo Xu1, Todd Lyle Kaneshiro1, Eun-Kee Jeong2, Dennis L Parker2, Zheng-Rong Lu31Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; 2Department of Radiology, University of Utah, Salt Lake City, UT, USA; 3Department of Biomedical Engineering, Cas...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2010-09-01
|
Series: | International Journal of Nanomedicine |
Online Access: | http://www.dovepress.com/synthesis-and-evaluation-of-nanoglobule-cystamine-gd-do3a-a-biodegrada-a5324 |
id |
doaj-2bcb2d0a5b8341eabaa4fef00ae31d36 |
---|---|
record_format |
Article |
spelling |
doaj-2bcb2d0a5b8341eabaa4fef00ae31d362020-11-24T21:20:06ZengDove Medical PressInternational Journal of Nanomedicine1176-91141178-20132010-09-012010default707713Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urographyRongzuo XuTodd Lyle KaneshiroEun-Kee Jeonget alRongzuo Xu1, Todd Lyle Kaneshiro1, Eun-Kee Jeong2, Dennis L Parker2, Zheng-Rong Lu31Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; 2Department of Radiology, University of Utah, Salt Lake City, UT, USA; 3Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USAAbstract: Dynamic contrast-enhanced magnetic resonance imaging has been recently shown to be effective for diagnostic urography. High-resolution urographic images can be acquired with T1 contrast agents for the kidney and urinary tract with minimal noise in the abdomen. Currently, clinical contrast agents are low molecular weight agents and can rapidly extravasate from blood circulation, leading to slow contrast agent elimination through kidney and consequently providing limited contrast enhancement in urinary tract. In this study, a new biodegradable macromolecular contrast agent, nanoglobule-G4-cystamine-(Gd-DO3A), was prepared by conjugating Gd-DO3A chelates on the surface of a generation 4 nanoglobule, poly-l-lysine octa(3-aminopropyl)silsesquioxane dendrimer, via a disulfide spacer, where the carrier had a precisely defined nanosize that is far smaller than the renal filtration threshold. The in vivo contrast enhancement and dynamic imaging of the urinary tract of the agent was evaluated in nude mice using a low molecular weight agent Gd(DTPA-BMA) as a control. The agent eliminated rapidly from blood circulation and accumulated more abundantly in urinary tract than Gd(DTPA-BMA). The fast elimination kinetics is ideal for functional evaluation of the kidneys. The morphology of the kidneys and urinary tract was better visualized by the biodegradable nanoglobular contrast agent than Gd(DTPA-BMA). The agent also resulted in low liver contrast enhancement, indicating low nonspecific tissue deposition. These features render the G4 nanoglobule-cystamine-(Gd-DO3A) conjugate a promising contrast agent for magnetic resonance urography.Keywords: dendrimer, gadolinium(III) contrast agent, disulfide bond, nanoparticle http://www.dovepress.com/synthesis-and-evaluation-of-nanoglobule-cystamine-gd-do3a-a-biodegrada-a5324 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rongzuo Xu Todd Lyle Kaneshiro Eun-Kee Jeong et al |
spellingShingle |
Rongzuo Xu Todd Lyle Kaneshiro Eun-Kee Jeong et al Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography International Journal of Nanomedicine |
author_facet |
Rongzuo Xu Todd Lyle Kaneshiro Eun-Kee Jeong et al |
author_sort |
Rongzuo Xu |
title |
Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography |
title_short |
Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography |
title_full |
Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography |
title_fullStr |
Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography |
title_full_unstemmed |
Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography |
title_sort |
synthesis and evaluation of nanoglobule-cystamine-(gd-do3a), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography |
publisher |
Dove Medical Press |
series |
International Journal of Nanomedicine |
issn |
1176-9114 1178-2013 |
publishDate |
2010-09-01 |
description |
Rongzuo Xu1, Todd Lyle Kaneshiro1, Eun-Kee Jeong2, Dennis L Parker2, Zheng-Rong Lu31Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; 2Department of Radiology, University of Utah, Salt Lake City, UT, USA; 3Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USAAbstract: Dynamic contrast-enhanced magnetic resonance imaging has been recently shown to be effective for diagnostic urography. High-resolution urographic images can be acquired with T1 contrast agents for the kidney and urinary tract with minimal noise in the abdomen. Currently, clinical contrast agents are low molecular weight agents and can rapidly extravasate from blood circulation, leading to slow contrast agent elimination through kidney and consequently providing limited contrast enhancement in urinary tract. In this study, a new biodegradable macromolecular contrast agent, nanoglobule-G4-cystamine-(Gd-DO3A), was prepared by conjugating Gd-DO3A chelates on the surface of a generation 4 nanoglobule, poly-l-lysine octa(3-aminopropyl)silsesquioxane dendrimer, via a disulfide spacer, where the carrier had a precisely defined nanosize that is far smaller than the renal filtration threshold. The in vivo contrast enhancement and dynamic imaging of the urinary tract of the agent was evaluated in nude mice using a low molecular weight agent Gd(DTPA-BMA) as a control. The agent eliminated rapidly from blood circulation and accumulated more abundantly in urinary tract than Gd(DTPA-BMA). The fast elimination kinetics is ideal for functional evaluation of the kidneys. The morphology of the kidneys and urinary tract was better visualized by the biodegradable nanoglobular contrast agent than Gd(DTPA-BMA). The agent also resulted in low liver contrast enhancement, indicating low nonspecific tissue deposition. These features render the G4 nanoglobule-cystamine-(Gd-DO3A) conjugate a promising contrast agent for magnetic resonance urography.Keywords: dendrimer, gadolinium(III) contrast agent, disulfide bond, nanoparticle |
url |
http://www.dovepress.com/synthesis-and-evaluation-of-nanoglobule-cystamine-gd-do3a-a-biodegrada-a5324 |
work_keys_str_mv |
AT rongzuoxu synthesisandevaluationofnanoglobulecystaminegddo3aabiodegradablenanosizedmagneticresonancecontrastagentfordynamiccontrastenhancedmagneticresonanceurography AT toddlylekaneshiro synthesisandevaluationofnanoglobulecystaminegddo3aabiodegradablenanosizedmagneticresonancecontrastagentfordynamiccontrastenhancedmagneticresonanceurography AT eunkeejeong synthesisandevaluationofnanoglobulecystaminegddo3aabiodegradablenanosizedmagneticresonancecontrastagentfordynamiccontrastenhancedmagneticresonanceurography AT etal synthesisandevaluationofnanoglobulecystaminegddo3aabiodegradablenanosizedmagneticresonancecontrastagentfordynamiccontrastenhancedmagneticresonanceurography |
_version_ |
1716734346741678080 |