Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes

The control of complex systems can be done decomposing the control task into a sequence of control modes, or modes for short. Each mode implements a parameterized feedback law until a termination condition is activated in response to the occurrence of an exogenous/endogenous event, which indicates t...

Full description

Bibliographic Details
Main Authors: Mariano De Paula, Luis O. Ávila, Carlos sánchez Reinoso, Gerardo G. Acosta
Format: Article
Language:Spanish
Published: Universitat Politecnica de Valencia 2015-10-01
Series:Revista Iberoamericana de Automática e Informática Industrial RIAI
Subjects:
Online Access:https://polipapers.upv.es/index.php/RIAI/article/view/9340
id doaj-2bbe58032194406cab0d01f3cf1cc7e0
record_format Article
spelling doaj-2bbe58032194406cab0d01f3cf1cc7e02021-04-02T14:03:31ZspaUniversitat Politecnica de ValenciaRevista Iberoamericana de Automática e Informática Industrial RIAI1697-79121697-79202015-10-0112438539610.1016/j.riai.2015.09.0046389Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian ProcessesMariano De Paula0Luis O. Ávila1Carlos sánchez Reinoso2Gerardo G. Acosta3Universidad Nacional del Centro de la Provincia de Buenos AiresCONICET-UTNUniversidad Nacional de Catamarca-CONICETUniversidad Nacional del Centro de la Provincia de Buenos AiresThe control of complex systems can be done decomposing the control task into a sequence of control modes, or modes for short. Each mode implements a parameterized feedback law until a termination condition is activated in response to the occurrence of an exogenous/endogenous event, which indicates that the execution mode must end. This paper presents a novel approach to find an optimal switching policy to solve a control problem by optimizing some measure of cost/benefit. An optimal policy implements an optimal multimodal control program, consisting in a sequence of control modes. The proposal includes the development of an algorithm based on the idea of dynamic programming integrating Gaussian processes and Bayesian active learning. In addition, an efficient use of the data to improve the exploration of the continuous state spaces solutions can be achieved through this approach. A representative case study is discussed and analyzed to demonstrate the performance of the proposed algorithm.https://polipapers.upv.es/index.php/RIAI/article/view/9340Control multimodalProgramación dinámicaProcesos GaussianosIncertidumbrePolítica
collection DOAJ
language Spanish
format Article
sources DOAJ
author Mariano De Paula
Luis O. Ávila
Carlos sánchez Reinoso
Gerardo G. Acosta
spellingShingle Mariano De Paula
Luis O. Ávila
Carlos sánchez Reinoso
Gerardo G. Acosta
Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes
Revista Iberoamericana de Automática e Informática Industrial RIAI
Control multimodal
Programación dinámica
Procesos Gaussianos
Incertidumbre
Política
author_facet Mariano De Paula
Luis O. Ávila
Carlos sánchez Reinoso
Gerardo G. Acosta
author_sort Mariano De Paula
title Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes
title_short Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes
title_full Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes
title_fullStr Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes
title_full_unstemmed Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes
title_sort multimodal control in uncertain environments using reinforcement learning and gaussian processes
publisher Universitat Politecnica de Valencia
series Revista Iberoamericana de Automática e Informática Industrial RIAI
issn 1697-7912
1697-7920
publishDate 2015-10-01
description The control of complex systems can be done decomposing the control task into a sequence of control modes, or modes for short. Each mode implements a parameterized feedback law until a termination condition is activated in response to the occurrence of an exogenous/endogenous event, which indicates that the execution mode must end. This paper presents a novel approach to find an optimal switching policy to solve a control problem by optimizing some measure of cost/benefit. An optimal policy implements an optimal multimodal control program, consisting in a sequence of control modes. The proposal includes the development of an algorithm based on the idea of dynamic programming integrating Gaussian processes and Bayesian active learning. In addition, an efficient use of the data to improve the exploration of the continuous state spaces solutions can be achieved through this approach. A representative case study is discussed and analyzed to demonstrate the performance of the proposed algorithm.
topic Control multimodal
Programación dinámica
Procesos Gaussianos
Incertidumbre
Política
url https://polipapers.upv.es/index.php/RIAI/article/view/9340
work_keys_str_mv AT marianodepaula multimodalcontrolinuncertainenvironmentsusingreinforcementlearningandgaussianprocesses
AT luisoavila multimodalcontrolinuncertainenvironmentsusingreinforcementlearningandgaussianprocesses
AT carlossanchezreinoso multimodalcontrolinuncertainenvironmentsusingreinforcementlearningandgaussianprocesses
AT gerardogacosta multimodalcontrolinuncertainenvironmentsusingreinforcementlearningandgaussianprocesses
_version_ 1721563140922015744