Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes
The control of complex systems can be done decomposing the control task into a sequence of control modes, or modes for short. Each mode implements a parameterized feedback law until a termination condition is activated in response to the occurrence of an exogenous/endogenous event, which indicates t...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universitat Politecnica de Valencia
2015-10-01
|
Series: | Revista Iberoamericana de Automática e Informática Industrial RIAI |
Subjects: | |
Online Access: | https://polipapers.upv.es/index.php/RIAI/article/view/9340 |
id |
doaj-2bbe58032194406cab0d01f3cf1cc7e0 |
---|---|
record_format |
Article |
spelling |
doaj-2bbe58032194406cab0d01f3cf1cc7e02021-04-02T14:03:31ZspaUniversitat Politecnica de ValenciaRevista Iberoamericana de Automática e Informática Industrial RIAI1697-79121697-79202015-10-0112438539610.1016/j.riai.2015.09.0046389Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian ProcessesMariano De Paula0Luis O. Ávila1Carlos sánchez Reinoso2Gerardo G. Acosta3Universidad Nacional del Centro de la Provincia de Buenos AiresCONICET-UTNUniversidad Nacional de Catamarca-CONICETUniversidad Nacional del Centro de la Provincia de Buenos AiresThe control of complex systems can be done decomposing the control task into a sequence of control modes, or modes for short. Each mode implements a parameterized feedback law until a termination condition is activated in response to the occurrence of an exogenous/endogenous event, which indicates that the execution mode must end. This paper presents a novel approach to find an optimal switching policy to solve a control problem by optimizing some measure of cost/benefit. An optimal policy implements an optimal multimodal control program, consisting in a sequence of control modes. The proposal includes the development of an algorithm based on the idea of dynamic programming integrating Gaussian processes and Bayesian active learning. In addition, an efficient use of the data to improve the exploration of the continuous state spaces solutions can be achieved through this approach. A representative case study is discussed and analyzed to demonstrate the performance of the proposed algorithm.https://polipapers.upv.es/index.php/RIAI/article/view/9340Control multimodalProgramación dinámicaProcesos GaussianosIncertidumbrePolítica |
collection |
DOAJ |
language |
Spanish |
format |
Article |
sources |
DOAJ |
author |
Mariano De Paula Luis O. Ávila Carlos sánchez Reinoso Gerardo G. Acosta |
spellingShingle |
Mariano De Paula Luis O. Ávila Carlos sánchez Reinoso Gerardo G. Acosta Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes Revista Iberoamericana de Automática e Informática Industrial RIAI Control multimodal Programación dinámica Procesos Gaussianos Incertidumbre Política |
author_facet |
Mariano De Paula Luis O. Ávila Carlos sánchez Reinoso Gerardo G. Acosta |
author_sort |
Mariano De Paula |
title |
Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes |
title_short |
Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes |
title_full |
Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes |
title_fullStr |
Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes |
title_full_unstemmed |
Multimodal Control in Uncertain Environments using Reinforcement Learning and Gaussian Processes |
title_sort |
multimodal control in uncertain environments using reinforcement learning and gaussian processes |
publisher |
Universitat Politecnica de Valencia |
series |
Revista Iberoamericana de Automática e Informática Industrial RIAI |
issn |
1697-7912 1697-7920 |
publishDate |
2015-10-01 |
description |
The control of complex systems can be done decomposing the control task into a sequence of control modes, or modes for short. Each mode implements a parameterized feedback law until a termination condition is activated in response to the occurrence of an exogenous/endogenous event, which indicates that the execution mode must end. This paper presents a novel approach to find an optimal switching policy to solve a control problem by optimizing some measure of cost/benefit. An optimal policy implements an optimal multimodal control program, consisting in a sequence of control modes. The proposal includes the development of an algorithm based on the idea of dynamic programming integrating Gaussian processes and Bayesian active learning. In addition, an efficient use of the data to improve the exploration of the continuous state spaces solutions can be achieved through this approach. A representative case study is discussed and analyzed to demonstrate the performance of the proposed algorithm. |
topic |
Control multimodal Programación dinámica Procesos Gaussianos Incertidumbre Política |
url |
https://polipapers.upv.es/index.php/RIAI/article/view/9340 |
work_keys_str_mv |
AT marianodepaula multimodalcontrolinuncertainenvironmentsusingreinforcementlearningandgaussianprocesses AT luisoavila multimodalcontrolinuncertainenvironmentsusingreinforcementlearningandgaussianprocesses AT carlossanchezreinoso multimodalcontrolinuncertainenvironmentsusingreinforcementlearningandgaussianprocesses AT gerardogacosta multimodalcontrolinuncertainenvironmentsusingreinforcementlearningandgaussianprocesses |
_version_ |
1721563140922015744 |