Low-energy calculations for nuclear photodisintegration

In the Standard Solar Model a central role in the nucleosynthesis is played by reactions of the kind XZ1A11+XZ2A22→YZ1+Z2A1+A2+γ${}_{{Z_1}}^{{A_1}}{X_1} + {}_{{Z_2}}^{{A_2}}{X_2} \to {}_{{Z_1} + {Z_2}}^{{A_1} + {A_2}}Y + \gamma $, which enter the proton-proton chains. These reactions can also be stu...

Full description

Bibliographic Details
Main Authors: Deflorian S., Efros V.D., Leidemann W.
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/201611308003
Description
Summary:In the Standard Solar Model a central role in the nucleosynthesis is played by reactions of the kind XZ1A11+XZ2A22→YZ1+Z2A1+A2+γ${}_{{Z_1}}^{{A_1}}{X_1} + {}_{{Z_2}}^{{A_2}}{X_2} \to {}_{{Z_1} + {Z_2}}^{{A_1} + {A_2}}Y + \gamma $, which enter the proton-proton chains. These reactions can also be studied through the inverse photodisintegration reaction. One option is to use the Lorentz Integral Transform approach, which transforms the continuum problem into a bound state-like one. A way to check the reliability of such methods is a direct calculation, for example using the Kohn Variational Principle to obtain the scattering wave function and then directly calculate the response function of the reaction.
ISSN:2100-014X