Printed Self-Powered Miniature Air Sampling Sensors

The recent geo-political climate has increased the necessity for autonomous, chip-sized, lightweight, air sampling systems which can quickly detect and characterize chemical, biological, radiological, nuclear, and high explosive (CBRNE) hazardous materials and relay the results. To address these iss...

Full description

Bibliographic Details
Main Author: Joseph Birmingham
Format: Article
Language:English
Published: IFSA Publishing, S.L. 2017-07-01
Series:Sensors & Transducers
Subjects:
Online Access:http://www.sensorsportal.com/HTML/DIGEST/july_2017/Vol_214/P_2933.pdf
Description
Summary:The recent geo-political climate has increased the necessity for autonomous, chip-sized, lightweight, air sampling systems which can quickly detect and characterize chemical, biological, radiological, nuclear, and high explosive (CBRNE) hazardous materials and relay the results. To address these issues, we have developed a self-powered 3-D chip architecture that processes air to produce concentrated size- sorted particle (and vapor) samples that could be integrated with on-chip nanoelectronic detectors for the discovery of weapons of mass destruction (WMD). The unique air movement approach is composed of a nanoscale energy harvester that provides electricity to a printed ion-drag pump to push air through coated-microstructured arrays. The self-powered microstructured array air sampler was designed using computational fluid dynamics (CFD) modeling to collect particles from 1-10 microns at greater than 99.9999 % efficiency with less than 100 Pascal [Pa] pressure drop at a specified air flow rate. Surprisingly, even at minimum air flow rates below specifications, these CFD predictions were matched by experimental results gathered in a Government aerosol chamber. The microstructured array engineered filter equaled the collection capability of a membrane or a high efficiency particle air (HEPA) filter at a fraction of the filter pressure drop.
ISSN:2306-8515
1726-5479