Bounded solutions of $k$-dimensional system of nonlinear difference equations of neutral type
The $k$-dimensional system of neutral type nonlinear difference equations with delays in the following form \begin{equation*} \begin{cases} \Delta \Big(x_i(n)+p_i(n)\,x_i(n-\tau_i)\Big)=a_i(n)\,f_i(x_{i+1}(n-\sigma_i))+g_i(n),\\ \Delta \Big(x_k(n)+p_k(n)\,x_k(n-\tau_k)\Big)=a_k(n)\,f_k(x_1(n-\sigma...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2015-11-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=4283 |
Summary: | The $k$-dimensional system of neutral type nonlinear difference equations with delays in the following form
\begin{equation*}
\begin{cases}
\Delta \Big(x_i(n)+p_i(n)\,x_i(n-\tau_i)\Big)=a_i(n)\,f_i(x_{i+1}(n-\sigma_i))+g_i(n),\\
\Delta \Big(x_k(n)+p_k(n)\,x_k(n-\tau_k)\Big)=a_k(n)\,f_k(x_1(n-\sigma_k))+g_k(n),
\end{cases}
\end{equation*}
where $i=1,\dots,k-1$, is considered. The aim of this paper is to present sufficient conditions for the existence of nonoscillatory bounded solutions of the above system with various $(p_i(n))$, $i=1,\dots,k$, $k\geq 2$. |
---|---|
ISSN: | 1417-3875 1417-3875 |