Boundary value problems for singular second order equations

Abstract We investigate strongly nonlinear differential equations of the type (Φ(k(t)u′(t)))′=f(t,u(t),u′(t)),a.e. on [0,T], $$\bigl(\Phi \bigl(k(t) u'(t) \bigr) \bigr)'= f \bigl(t,u(t),u'(t) \bigr), \quad\text{a.e. on } [0,T], $$ where Φ is a strictly increasing homeomorphism and the...

Full description

Bibliographic Details
Main Authors: Alessandro Calamai, Cristina Marcelli, Francesca Papalini
Format: Article
Language:English
Published: SpringerOpen 2018-09-01
Series:Fixed Point Theory and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13663-018-0645-0
id doaj-2b86d267f66c4bcba66efa72974bf09c
record_format Article
spelling doaj-2b86d267f66c4bcba66efa72974bf09c2020-11-24T21:27:38ZengSpringerOpenFixed Point Theory and Applications1687-18122018-09-012018112210.1186/s13663-018-0645-0Boundary value problems for singular second order equationsAlessandro Calamai0Cristina Marcelli1Francesca Papalini2Dipartimento di Ingegneria Civile, Edile e Architettura, Università Politecnica delle MarcheDipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle MarcheDipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle MarcheAbstract We investigate strongly nonlinear differential equations of the type (Φ(k(t)u′(t)))′=f(t,u(t),u′(t)),a.e. on [0,T], $$\bigl(\Phi \bigl(k(t) u'(t) \bigr) \bigr)'= f \bigl(t,u(t),u'(t) \bigr), \quad\text{a.e. on } [0,T], $$ where Φ is a strictly increasing homeomorphism and the nonnegative function k may vanish on a set of measure zero. By using the upper and lower solutions method, we prove existence results for the Dirichlet problem associated with the above equation, as well as for different boundary conditions involving the function k. Our existence results require a weak form of a Wintner–Nagumo growth condition.http://link.springer.com/article/10.1186/s13663-018-0645-0Boundary value problemsNonlinear differential operatorsΦ-Laplacian operatorSingular equationNagumo condition
collection DOAJ
language English
format Article
sources DOAJ
author Alessandro Calamai
Cristina Marcelli
Francesca Papalini
spellingShingle Alessandro Calamai
Cristina Marcelli
Francesca Papalini
Boundary value problems for singular second order equations
Fixed Point Theory and Applications
Boundary value problems
Nonlinear differential operators
Φ-Laplacian operator
Singular equation
Nagumo condition
author_facet Alessandro Calamai
Cristina Marcelli
Francesca Papalini
author_sort Alessandro Calamai
title Boundary value problems for singular second order equations
title_short Boundary value problems for singular second order equations
title_full Boundary value problems for singular second order equations
title_fullStr Boundary value problems for singular second order equations
title_full_unstemmed Boundary value problems for singular second order equations
title_sort boundary value problems for singular second order equations
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1812
publishDate 2018-09-01
description Abstract We investigate strongly nonlinear differential equations of the type (Φ(k(t)u′(t)))′=f(t,u(t),u′(t)),a.e. on [0,T], $$\bigl(\Phi \bigl(k(t) u'(t) \bigr) \bigr)'= f \bigl(t,u(t),u'(t) \bigr), \quad\text{a.e. on } [0,T], $$ where Φ is a strictly increasing homeomorphism and the nonnegative function k may vanish on a set of measure zero. By using the upper and lower solutions method, we prove existence results for the Dirichlet problem associated with the above equation, as well as for different boundary conditions involving the function k. Our existence results require a weak form of a Wintner–Nagumo growth condition.
topic Boundary value problems
Nonlinear differential operators
Φ-Laplacian operator
Singular equation
Nagumo condition
url http://link.springer.com/article/10.1186/s13663-018-0645-0
work_keys_str_mv AT alessandrocalamai boundaryvalueproblemsforsingularsecondorderequations
AT cristinamarcelli boundaryvalueproblemsforsingularsecondorderequations
AT francescapapalini boundaryvalueproblemsforsingularsecondorderequations
_version_ 1716713706818109440