Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade
<p>Abstract</p> <p>Background</p> <p>The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy charge that acts as a 'metabolic master switch' and inhibits cell proliferation. Activation requires phosphorylation of Thr172 of AMPK within th...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2003-09-01
|
Series: | Journal of Biology |
Online Access: | http://jbiol.com/content/2/4/28 |
id |
doaj-2b442b0aefa74e41b91287a1d651bbbf |
---|---|
record_format |
Article |
spelling |
doaj-2b442b0aefa74e41b91287a1d651bbbf2020-11-24T22:15:56ZengBMCJournal of Biology1478-58541475-49242003-09-01242810.1186/1475-4924-2-28Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascadeAlessi Dario RMäkelä Tomi PMustard Kirsty JUdd LinaReid Jennifer LBoudeau JérômeHawley Simon AHardie D Grahame<p>Abstract</p> <p>Background</p> <p>The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy charge that acts as a 'metabolic master switch' and inhibits cell proliferation. Activation requires phosphorylation of Thr172 of AMPK within the activation loop by upstream kinases (AMPKKs) that have not been identified. Recently, we identified three related protein kinases acting upstream of the yeast homolog of AMPK. Although they do not have obvious mammalian homologs, they are related to LKB1, a tumor suppressor that is mutated in the human Peutz-Jeghers cancer syndrome. We recently showed that LKB1 exists as a complex with two accessory subunits, STRADα/β and MO25α/β.</p> <p>Results</p> <p>We report the following observations. First, two AMPKK activities purified from rat liver contain LKB1, STRADα and MO25α, and can be immunoprecipitated using anti-LKB1 antibodies. Second, both endogenous and recombinant complexes of LKB1, STRADα/β and MO25α/β activate AMPK via phosphorylation of Thr172. Third, catalytically active LKB1, STRADα or STRADβ and MO25α or MO25β are required for full activity. Fourth, the AMPK-activating drugs AICA riboside and phenformin do not activate AMPK in HeLa cells (which lack LKB1), but activation can be restored by stably expressing wild-type, but not catalytically inactive, LKB1. Fifth, AICA riboside and phenformin fail to activate AMPK in immortalized fibroblasts from <it>LKB1</it>-knockout mouse embryos.</p> <p>Conclusions</p> <p>These results provide the first description of a physiological substrate for the LKB1 tumor suppressor and suggest that it functions as an upstream regulator of AMPK. Our findings indicate that the tumors in Peutz-Jeghers syndrome could result from deficient activation of AMPK as a consequence of LKB1 inactivation.</p> http://jbiol.com/content/2/4/28 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alessi Dario R Mäkelä Tomi P Mustard Kirsty J Udd Lina Reid Jennifer L Boudeau Jérôme Hawley Simon A Hardie D Grahame |
spellingShingle |
Alessi Dario R Mäkelä Tomi P Mustard Kirsty J Udd Lina Reid Jennifer L Boudeau Jérôme Hawley Simon A Hardie D Grahame Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade Journal of Biology |
author_facet |
Alessi Dario R Mäkelä Tomi P Mustard Kirsty J Udd Lina Reid Jennifer L Boudeau Jérôme Hawley Simon A Hardie D Grahame |
author_sort |
Alessi Dario R |
title |
Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade |
title_short |
Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade |
title_full |
Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade |
title_fullStr |
Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade |
title_full_unstemmed |
Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade |
title_sort |
complexes between the lkb1 tumor suppressor, stradα/β and mo25α/β are upstream kinases in the amp-activated protein kinase cascade |
publisher |
BMC |
series |
Journal of Biology |
issn |
1478-5854 1475-4924 |
publishDate |
2003-09-01 |
description |
<p>Abstract</p> <p>Background</p> <p>The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy charge that acts as a 'metabolic master switch' and inhibits cell proliferation. Activation requires phosphorylation of Thr172 of AMPK within the activation loop by upstream kinases (AMPKKs) that have not been identified. Recently, we identified three related protein kinases acting upstream of the yeast homolog of AMPK. Although they do not have obvious mammalian homologs, they are related to LKB1, a tumor suppressor that is mutated in the human Peutz-Jeghers cancer syndrome. We recently showed that LKB1 exists as a complex with two accessory subunits, STRADα/β and MO25α/β.</p> <p>Results</p> <p>We report the following observations. First, two AMPKK activities purified from rat liver contain LKB1, STRADα and MO25α, and can be immunoprecipitated using anti-LKB1 antibodies. Second, both endogenous and recombinant complexes of LKB1, STRADα/β and MO25α/β activate AMPK via phosphorylation of Thr172. Third, catalytically active LKB1, STRADα or STRADβ and MO25α or MO25β are required for full activity. Fourth, the AMPK-activating drugs AICA riboside and phenformin do not activate AMPK in HeLa cells (which lack LKB1), but activation can be restored by stably expressing wild-type, but not catalytically inactive, LKB1. Fifth, AICA riboside and phenformin fail to activate AMPK in immortalized fibroblasts from <it>LKB1</it>-knockout mouse embryos.</p> <p>Conclusions</p> <p>These results provide the first description of a physiological substrate for the LKB1 tumor suppressor and suggest that it functions as an upstream regulator of AMPK. Our findings indicate that the tumors in Peutz-Jeghers syndrome could result from deficient activation of AMPK as a consequence of LKB1 inactivation.</p> |
url |
http://jbiol.com/content/2/4/28 |
work_keys_str_mv |
AT alessidarior complexesbetweenthelkb1tumorsuppressorstradabandmo25abareupstreamkinasesintheampactivatedproteinkinasecascade AT makelatomip complexesbetweenthelkb1tumorsuppressorstradabandmo25abareupstreamkinasesintheampactivatedproteinkinasecascade AT mustardkirstyj complexesbetweenthelkb1tumorsuppressorstradabandmo25abareupstreamkinasesintheampactivatedproteinkinasecascade AT uddlina complexesbetweenthelkb1tumorsuppressorstradabandmo25abareupstreamkinasesintheampactivatedproteinkinasecascade AT reidjenniferl complexesbetweenthelkb1tumorsuppressorstradabandmo25abareupstreamkinasesintheampactivatedproteinkinasecascade AT boudeaujerome complexesbetweenthelkb1tumorsuppressorstradabandmo25abareupstreamkinasesintheampactivatedproteinkinasecascade AT hawleysimona complexesbetweenthelkb1tumorsuppressorstradabandmo25abareupstreamkinasesintheampactivatedproteinkinasecascade AT hardiedgrahame complexesbetweenthelkb1tumorsuppressorstradabandmo25abareupstreamkinasesintheampactivatedproteinkinasecascade |
_version_ |
1725792238066204672 |