Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis.
Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections, traits facilitated by the ability to quickly acquire and transfer virulence determinants. A 150 kb pathogenicity island (PAI) comprised of genes contributing to virulence is found in many enterococcal is...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2012-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3319582?pdf=render |
id |
doaj-2b3fff9b25b24d0080b634cf0bbcfae9 |
---|---|
record_format |
Article |
spelling |
doaj-2b3fff9b25b24d0080b634cf0bbcfae92020-11-24T22:16:34ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-0174e3439810.1371/journal.pone.0034398Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis.Scott M MaddoxPhillip S CoburnNathan ShankarTyrrell ConwayEnterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections, traits facilitated by the ability to quickly acquire and transfer virulence determinants. A 150 kb pathogenicity island (PAI) comprised of genes contributing to virulence is found in many enterococcal isolates and is known to undergo horizontal transfer. We have shown that the PAI-encoded transcriptional regulator PerA contributes to pathogenicity in the mouse peritonitis infection model. In this study, we used whole-genome microarrays to determine the PerA regulon. The PerA regulon is extensive, as transcriptional analysis showed 151 differentially regulated genes. Our findings reveal that PerA coordinately regulates genes important for metabolism, amino acid degradation, and pathogenicity. Further transcriptional analysis revealed that PerA is influenced by bicarbonate. Additionally, PerA influences the ability of E. faecalis to bind to human platelets. Our results suggest that PerA is a global transcriptional regulator that coordinately regulates genes responsible for enterococcal pathogenicity.http://europepmc.org/articles/PMC3319582?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Scott M Maddox Phillip S Coburn Nathan Shankar Tyrrell Conway |
spellingShingle |
Scott M Maddox Phillip S Coburn Nathan Shankar Tyrrell Conway Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis. PLoS ONE |
author_facet |
Scott M Maddox Phillip S Coburn Nathan Shankar Tyrrell Conway |
author_sort |
Scott M Maddox |
title |
Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis. |
title_short |
Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis. |
title_full |
Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis. |
title_fullStr |
Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis. |
title_full_unstemmed |
Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis. |
title_sort |
transcriptional regulator pera influences biofilm-associated, platelet binding, and metabolic gene expression in enterococcus faecalis. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2012-01-01 |
description |
Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections, traits facilitated by the ability to quickly acquire and transfer virulence determinants. A 150 kb pathogenicity island (PAI) comprised of genes contributing to virulence is found in many enterococcal isolates and is known to undergo horizontal transfer. We have shown that the PAI-encoded transcriptional regulator PerA contributes to pathogenicity in the mouse peritonitis infection model. In this study, we used whole-genome microarrays to determine the PerA regulon. The PerA regulon is extensive, as transcriptional analysis showed 151 differentially regulated genes. Our findings reveal that PerA coordinately regulates genes important for metabolism, amino acid degradation, and pathogenicity. Further transcriptional analysis revealed that PerA is influenced by bicarbonate. Additionally, PerA influences the ability of E. faecalis to bind to human platelets. Our results suggest that PerA is a global transcriptional regulator that coordinately regulates genes responsible for enterococcal pathogenicity. |
url |
http://europepmc.org/articles/PMC3319582?pdf=render |
work_keys_str_mv |
AT scottmmaddox transcriptionalregulatorperainfluencesbiofilmassociatedplateletbindingandmetabolicgeneexpressioninenterococcusfaecalis AT phillipscoburn transcriptionalregulatorperainfluencesbiofilmassociatedplateletbindingandmetabolicgeneexpressioninenterococcusfaecalis AT nathanshankar transcriptionalregulatorperainfluencesbiofilmassociatedplateletbindingandmetabolicgeneexpressioninenterococcusfaecalis AT tyrrellconway transcriptionalregulatorperainfluencesbiofilmassociatedplateletbindingandmetabolicgeneexpressioninenterococcusfaecalis |
_version_ |
1725789051755167744 |