A cautionary note on the use of unsupervised machine learning algorithms to characterise malaria parasite population structure from genetic distance matrices.

Genetic surveillance of malaria parasites supports malaria control programmes, treatment guidelines and elimination strategies. Surveillance studies often pose questions about malaria parasite ancestry (e.g. how antimalarial resistance has spread) and employ statistical methods that characterise par...

Full description

Bibliographic Details
Main Authors: James A Watson, Aimee R Taylor, Elizabeth A Ashley, Arjen Dondorp, Caroline O Buckee, Nicholas J White, Chris C Holmes
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-10-01
Series:PLoS Genetics
Online Access:https://doi.org/10.1371/journal.pgen.1009037

Similar Items