Summary: | Among many cancers, breast cancer is the second most common cause of death in women. Early detection and early treatment reduce breast cancer mortality. Mammography plays an important role in breast cancer screening because it can detect early breast masses or calcification region. One of the drawbacks in breast mammography is breast cancer masses are more difficult to be found in extremely dense breast tissue. We select 106 breast mammography images with masses from INbreast database. Through data augmentation, the number of breast mammography images was increased to 7632. We utilize data augmentation on breast mammography images, and then apply the Convolutional Neural Networks (CNN) models including AlexNet, DenseNet, and ShuffleNet to classify these breast mammography images.
|