Split-Based Algorithm for Weighted Context-Free Grammar Induction
The split-based method in a weighted context-free grammar (WCFG) induction was formalised and verified on a comprehensive set of context-free languages. WCFG is learned using a novel grammatical inference method. The proposed method learns WCFG from both positive and negative samples, whereas the we...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-01-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/11/3/1030 |
Summary: | The split-based method in a weighted context-free grammar (WCFG) induction was formalised and verified on a comprehensive set of context-free languages. WCFG is learned using a novel grammatical inference method. The proposed method learns WCFG from both positive and negative samples, whereas the weights of rules are estimated using a novel Inside–Outside Contrastive Estimation algorithm. The results showed that our approach outperforms in terms of F1 scores of other state-of-the-art methods. |
---|---|
ISSN: | 2076-3417 |