Analysis of Damped Mass-Spring Systems for Sound Synthesis

There are many ways of synthesizing sound on a computer. The method that we consider, called a mass-spring system, synthesizes sound by simulating the vibrations of a network of interconnected masses, springs, and dampers. Numerical methods are required to approximate the differential equation of a...

Full description

Bibliographic Details
Main Authors: Don Morgan, Sanzheng Qiao
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:EURASIP Journal on Audio, Speech, and Music Processing
Online Access:http://dx.doi.org/10.1155/2009/947823
Description
Summary:There are many ways of synthesizing sound on a computer. The method that we consider, called a mass-spring system, synthesizes sound by simulating the vibrations of a network of interconnected masses, springs, and dampers. Numerical methods are required to approximate the differential equation of a mass-spring system. The standard numerical method used in implementing mass-spring systems for use in sound synthesis is the symplectic Euler method. Implementers and users of mass-spring systems should be aware of the limitations of the numerical methods used; in particular we are interested in the stability and accuracy of the numerical methods used. We present an analysis of the symplectic Euler method that shows the conditions under which the method is stable and the accuracy of the decay rates and frequencies of the sounds produced.
ISSN:1687-4714
1687-4722