Summary: | Accurate rainfall estimations based on ground-based rainfall observations and satellite-based rainfall measurements are essential for hydrological and environmental modeling in the Qaidam Basin of China. We evaluated the accuracy of daily and monthly scale Tropical Rainfall Measuring Mission (TRMM) rainfall products in the Qaidam Basin. A Geographically Weighted Regression (GWR) was used to estimate the spatial distribution of the TRMM product error using altitude and geographical latitude and longitude as independent variables. Finally, a rainfall model was developed by combining ground-based and satellite-based rainfall measurements, and the model precision was validated with a cross-validation method based on rainfall gauge measurements. The TRMM precipitation observations may contain errors compared with the ground-measured precipitation, and the error for daily data was higher than that for monthly data. A time series of TRMM rainfall measurements at the same location showed errors at certain time intervals. The ground-based and satellite-based rainfall GWR model improved the error in the TRMM rainfall products. This rainfall estimation model with a 1-km spatial resolution is applicable in the Qaidam Basin in which there is a sparse network of rainfall gauges, and is significant for spatial investigations of hydrology and climate change.
|