METHODS OF Z-CLASSIFIERS LEARNING

The use of genetic and gradient algorithms for learning classifiers based on Z-model was considered. Combined method of consistent applying this algorithms was offered. The resulting method allows to calculate all model parameters including integer ones and provides acceptable model training quality...

Full description

Bibliographic Details
Main Authors: D. A. Lavnikevich, M. M. Tatur
Format: Article
Language:Russian
Published: Educational institution «Belarusian State University of Informatics and Radioelectronics» 2019-06-01
Series:Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki
Subjects:
Online Access:https://doklady.bsuir.by/jour/article/view/230
id doaj-2af30b8970ae4778bae2e7283b5912de
record_format Article
spelling doaj-2af30b8970ae4778bae2e7283b5912de2021-07-28T16:19:46ZrusEducational institution «Belarusian State University of Informatics and Radioelectronics»Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki1729-76482019-06-010698101229METHODS OF Z-CLASSIFIERS LEARNINGD. A. Lavnikevich0M. M. Tatur1Белорусский государственный университет информатики и радиоэлектроникиБелорусский государственный университет информатики и радиоэлектроникиThe use of genetic and gradient algorithms for learning classifiers based on Z-model was considered. Combined method of consistent applying this algorithms was offered. The resulting method allows to calculate all model parameters including integer ones and provides acceptable model training quality.https://doklady.bsuir.by/jour/article/view/230классификаторыобучение классификаторовгенетические алгоритмыградиентные алгоритмы
collection DOAJ
language Russian
format Article
sources DOAJ
author D. A. Lavnikevich
M. M. Tatur
spellingShingle D. A. Lavnikevich
M. M. Tatur
METHODS OF Z-CLASSIFIERS LEARNING
Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki
классификаторы
обучение классификаторов
генетические алгоритмы
градиентные алгоритмы
author_facet D. A. Lavnikevich
M. M. Tatur
author_sort D. A. Lavnikevich
title METHODS OF Z-CLASSIFIERS LEARNING
title_short METHODS OF Z-CLASSIFIERS LEARNING
title_full METHODS OF Z-CLASSIFIERS LEARNING
title_fullStr METHODS OF Z-CLASSIFIERS LEARNING
title_full_unstemmed METHODS OF Z-CLASSIFIERS LEARNING
title_sort methods of z-classifiers learning
publisher Educational institution «Belarusian State University of Informatics and Radioelectronics»
series Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki
issn 1729-7648
publishDate 2019-06-01
description The use of genetic and gradient algorithms for learning classifiers based on Z-model was considered. Combined method of consistent applying this algorithms was offered. The resulting method allows to calculate all model parameters including integer ones and provides acceptable model training quality.
topic классификаторы
обучение классификаторов
генетические алгоритмы
градиентные алгоритмы
url https://doklady.bsuir.by/jour/article/view/230
work_keys_str_mv AT dalavnikevich methodsofzclassifierslearning
AT mmtatur methodsofzclassifierslearning
_version_ 1721267925109702656