The Effects of Early Life Stress, Postnatal Diet Modulation, and Long-Term Western-Style Diet on Later-Life Metabolic and Cognitive Outcomes

Early life stress (ES) increases the risk to develop metabolic and brain disorders in adulthood. Breastfeeding (exclusivity and duration) is associated with improved metabolic and neurocognitive health outcomes, and the physical properties of the dietary lipids may contribute to this. Here, we teste...

Full description

Bibliographic Details
Main Authors: Maralinde R. Abbink, Lidewij Schipper, Eva F.G. Naninck, Cato M.H. de Vos, Romy Meier, Eline M. van der Beek, Paul J. Lucassen, Aniko Korosi
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Nutrients
Subjects:
Online Access:https://www.mdpi.com/2072-6643/12/2/570
Description
Summary:Early life stress (ES) increases the risk to develop metabolic and brain disorders in adulthood. Breastfeeding (exclusivity and duration) is associated with improved metabolic and neurocognitive health outcomes, and the physical properties of the dietary lipids may contribute to this. Here, we tested whether early life exposure to dietary lipids mimicking some physical characteristics of breastmilk (i.e., large, phospholipid-coated lipid droplets; Concept Nuturis® infant milk formula (N-IMF)), could protect against ES-induced metabolic and brain abnormalities under standard circumstances, and in response to prolonged Western-style diet (WSD) in adulthood. ES was induced by exposing mice to limited nesting material from postnatal day (P) 2 to P9. From P16 to P42, male offspring were fed a standard IMF (S-IMF) or N-IMF, followed by either standard rodent diet (SD) or WSD until P230. We then assessed body composition development, fat mass, metabolic hormones, hippocampus-dependent cognitive function, and neurogenesis (proliferation and survival). Prolonged WSD resulted in an obesogenic phenotype at P230, which was not modulated by previous ES or N-IMF exposure. Nevertheless, ES and N-IMF modulated the effect of WSD on neurogenesis at P230, without affecting cognitive function, highlighting programming effects of the early life environment on the hippocampal response to later life challenges at a structural level.
ISSN:2072-6643