Synthesis of multicomponent metallic layers during impulse plasma deposition

Pulsed plasma in the impulse plasma deposition (IPD) synthesis is generated in a coaxial accelerator by strong periodic electrical pulses, and it is distributed in a form of energetic plasma packets. A nearly complete ionization of gas, in these conditions of plasma generation, favors the nucleation...

Full description

Bibliographic Details
Main Authors: Nowakowska-Langier Katarzyna, Chodun Rafal, Zdunek Krzysztof
Format: Article
Language:English
Published: Sciendo 2015-12-01
Series:Materials Science-Poland
Subjects:
Online Access:https://doi.org/10.1515/msp-2015-0077
Description
Summary:Pulsed plasma in the impulse plasma deposition (IPD) synthesis is generated in a coaxial accelerator by strong periodic electrical pulses, and it is distributed in a form of energetic plasma packets. A nearly complete ionization of gas, in these conditions of plasma generation, favors the nucleation of new phase of ions and synthesis of metastable materials in a form of coatings which are characterized by amorphous and/or nanocrystalline structure. In this work, the Fe–Cu alloy, which is immiscible in the state of equilibrium, was selected as a model system to study the possibility of formation of a non-equilibrium phase during the IPD synthesis. Structural characterization of the layers was done by means of X-ray diffraction and conversion-electron Mössbauer spectroscopy. It was found that supersaturated solid solutions were created as a result of mixing and/or alloying effects between the layer components delivered to the substrate independently and separately in time. Therefore, the solubility in the Fe–Cu system was largely extended in relation to the equilibrium conditions, as described by the equilibrium phase diagram in the solid state.
ISSN:2083-134X