Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16

The accurate of i identificationntrinsically disordered proteins or protein regions is of great importance, as they are involved in critical biological process and related to various human diseases. In this paper, we develop a deep neural network that is based on the well-known VGG16 . Our deep neur...

Full description

Bibliographic Details
Main Authors: Pengchang Xu, Jiaxiang Zhao, Jie Zhang
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/14/4/107
id doaj-2ad06abdbbf8477c8b4faf321b24b360
record_format Article
spelling doaj-2ad06abdbbf8477c8b4faf321b24b3602021-03-28T23:01:32ZengMDPI AGAlgorithms1999-48932021-03-011410710710.3390/a14040107Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16Pengchang Xu0Jiaxiang Zhao1Jie Zhang2College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, ChinaCollege of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, ChinaCollege of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, ChinaThe accurate of i identificationntrinsically disordered proteins or protein regions is of great importance, as they are involved in critical biological process and related to various human diseases. In this paper, we develop a deep neural network that is based on the well-known VGG16 . Our deep neural network is then trained through using 1450 proteins from the dataset DIS1616 and the trained neural network is tested on the remaining 166 proteins. Our trained neural network is also tested on the blind test set R80 and MXD494 to further demonstrate the performance of our model. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>C</mi><mi>C</mi></mrow></semantics></math></inline-formula> value of our trained deep neural network is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>5132</mn></mrow></semantics></math></inline-formula> on the test set DIS166, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>5270</mn></mrow></semantics></math></inline-formula> on the blind test set R80 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>4577</mn></mrow></semantics></math></inline-formula> on the blind test set MXD494. All of these <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>C</mi><mi>C</mi></mrow></semantics></math></inline-formula> values of our trained deep neural network exceed the corresponding values of existing prediction methods.https://www.mdpi.com/1999-4893/14/4/107Intrinsically disordered proteinsVGG16deep neural network
collection DOAJ
language English
format Article
sources DOAJ
author Pengchang Xu
Jiaxiang Zhao
Jie Zhang
spellingShingle Pengchang Xu
Jiaxiang Zhao
Jie Zhang
Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16
Algorithms
Intrinsically disordered proteins
VGG16
deep neural network
author_facet Pengchang Xu
Jiaxiang Zhao
Jie Zhang
author_sort Pengchang Xu
title Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16
title_short Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16
title_full Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16
title_fullStr Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16
title_full_unstemmed Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16
title_sort identification of intrinsically disordered protein regions based on deep neural network-vgg16
publisher MDPI AG
series Algorithms
issn 1999-4893
publishDate 2021-03-01
description The accurate of i identificationntrinsically disordered proteins or protein regions is of great importance, as they are involved in critical biological process and related to various human diseases. In this paper, we develop a deep neural network that is based on the well-known VGG16 . Our deep neural network is then trained through using 1450 proteins from the dataset DIS1616 and the trained neural network is tested on the remaining 166 proteins. Our trained neural network is also tested on the blind test set R80 and MXD494 to further demonstrate the performance of our model. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>C</mi><mi>C</mi></mrow></semantics></math></inline-formula> value of our trained deep neural network is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>5132</mn></mrow></semantics></math></inline-formula> on the test set DIS166, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>5270</mn></mrow></semantics></math></inline-formula> on the blind test set R80 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>4577</mn></mrow></semantics></math></inline-formula> on the blind test set MXD494. All of these <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>C</mi><mi>C</mi></mrow></semantics></math></inline-formula> values of our trained deep neural network exceed the corresponding values of existing prediction methods.
topic Intrinsically disordered proteins
VGG16
deep neural network
url https://www.mdpi.com/1999-4893/14/4/107
work_keys_str_mv AT pengchangxu identificationofintrinsicallydisorderedproteinregionsbasedondeepneuralnetworkvgg16
AT jiaxiangzhao identificationofintrinsicallydisorderedproteinregionsbasedondeepneuralnetworkvgg16
AT jiezhang identificationofintrinsicallydisorderedproteinregionsbasedondeepneuralnetworkvgg16
_version_ 1724199368508047360