Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16
The accurate of i identificationntrinsically disordered proteins or protein regions is of great importance, as they are involved in critical biological process and related to various human diseases. In this paper, we develop a deep neural network that is based on the well-known VGG16 . Our deep neur...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Algorithms |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4893/14/4/107 |
id |
doaj-2ad06abdbbf8477c8b4faf321b24b360 |
---|---|
record_format |
Article |
spelling |
doaj-2ad06abdbbf8477c8b4faf321b24b3602021-03-28T23:01:32ZengMDPI AGAlgorithms1999-48932021-03-011410710710.3390/a14040107Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16Pengchang Xu0Jiaxiang Zhao1Jie Zhang2College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, ChinaCollege of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, ChinaCollege of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, ChinaThe accurate of i identificationntrinsically disordered proteins or protein regions is of great importance, as they are involved in critical biological process and related to various human diseases. In this paper, we develop a deep neural network that is based on the well-known VGG16 . Our deep neural network is then trained through using 1450 proteins from the dataset DIS1616 and the trained neural network is tested on the remaining 166 proteins. Our trained neural network is also tested on the blind test set R80 and MXD494 to further demonstrate the performance of our model. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>C</mi><mi>C</mi></mrow></semantics></math></inline-formula> value of our trained deep neural network is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>5132</mn></mrow></semantics></math></inline-formula> on the test set DIS166, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>5270</mn></mrow></semantics></math></inline-formula> on the blind test set R80 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>4577</mn></mrow></semantics></math></inline-formula> on the blind test set MXD494. All of these <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>C</mi><mi>C</mi></mrow></semantics></math></inline-formula> values of our trained deep neural network exceed the corresponding values of existing prediction methods.https://www.mdpi.com/1999-4893/14/4/107Intrinsically disordered proteinsVGG16deep neural network |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Pengchang Xu Jiaxiang Zhao Jie Zhang |
spellingShingle |
Pengchang Xu Jiaxiang Zhao Jie Zhang Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16 Algorithms Intrinsically disordered proteins VGG16 deep neural network |
author_facet |
Pengchang Xu Jiaxiang Zhao Jie Zhang |
author_sort |
Pengchang Xu |
title |
Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16 |
title_short |
Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16 |
title_full |
Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16 |
title_fullStr |
Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16 |
title_full_unstemmed |
Identification of Intrinsically Disordered Protein Regions Based on Deep Neural Network-VGG16 |
title_sort |
identification of intrinsically disordered protein regions based on deep neural network-vgg16 |
publisher |
MDPI AG |
series |
Algorithms |
issn |
1999-4893 |
publishDate |
2021-03-01 |
description |
The accurate of i identificationntrinsically disordered proteins or protein regions is of great importance, as they are involved in critical biological process and related to various human diseases. In this paper, we develop a deep neural network that is based on the well-known VGG16 . Our deep neural network is then trained through using 1450 proteins from the dataset DIS1616 and the trained neural network is tested on the remaining 166 proteins. Our trained neural network is also tested on the blind test set R80 and MXD494 to further demonstrate the performance of our model. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>C</mi><mi>C</mi></mrow></semantics></math></inline-formula> value of our trained deep neural network is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>5132</mn></mrow></semantics></math></inline-formula> on the test set DIS166, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>5270</mn></mrow></semantics></math></inline-formula> on the blind test set R80 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>4577</mn></mrow></semantics></math></inline-formula> on the blind test set MXD494. All of these <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>C</mi><mi>C</mi></mrow></semantics></math></inline-formula> values of our trained deep neural network exceed the corresponding values of existing prediction methods. |
topic |
Intrinsically disordered proteins VGG16 deep neural network |
url |
https://www.mdpi.com/1999-4893/14/4/107 |
work_keys_str_mv |
AT pengchangxu identificationofintrinsicallydisorderedproteinregionsbasedondeepneuralnetworkvgg16 AT jiaxiangzhao identificationofintrinsicallydisorderedproteinregionsbasedondeepneuralnetworkvgg16 AT jiezhang identificationofintrinsicallydisorderedproteinregionsbasedondeepneuralnetworkvgg16 |
_version_ |
1724199368508047360 |