Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain Processing

The sodium-activated potassium channel Slack (K<sub>Na</sub>1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (I<sub>KNa</sub>) and modulates neuronal activity. Previous studies suggest that...

Full description

Bibliographic Details
Main Authors: Ruirui Lu, Katharina Metzner, Fangyuan Zhou, Cathrin Flauaus, Annika Balzulat, Patrick Engel, Jonas Petersen, Rebekka Ehinger, Anne Bausch, Peter Ruth, Robert Lukowski, Achim Schmidtko
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/1/405
id doaj-2aa8eeb924674d3aac37da179a4c214a
record_format Article
spelling doaj-2aa8eeb924674d3aac37da179a4c214a2021-01-03T00:00:45ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672021-01-012240540510.3390/ijms22010405Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain ProcessingRuirui Lu0Katharina Metzner1Fangyuan Zhou2Cathrin Flauaus3Annika Balzulat4Patrick Engel5Jonas Petersen6Rebekka Ehinger7Anne Bausch8Peter Ruth9Robert Lukowski10Achim Schmidtko11Institut für Pharmakologie und Klinische Pharmazie, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Hessen, GermanyInstitut für Pharmakologie und Klinische Pharmazie, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Hessen, GermanyInstitut für Pharmakologie und Klinische Pharmazie, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Hessen, GermanyInstitut für Pharmakologie und Klinische Pharmazie, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Hessen, GermanyInstitut für Pharmakologie und Klinische Pharmazie, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Hessen, GermanyInstitut für Pharmakologie und Klinische Pharmazie, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Hessen, GermanyInstitut für Pharmakologie und Klinische Pharmazie, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Hessen, GermanyPharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, Universität Tübingen, 72076 Tübingen, Baden-Württemberg, GermanyPharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, Universität Tübingen, 72076 Tübingen, Baden-Württemberg, GermanyPharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, Universität Tübingen, 72076 Tübingen, Baden-Württemberg, GermanyPharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, Universität Tübingen, 72076 Tübingen, Baden-Württemberg, GermanyInstitut für Pharmakologie und Klinische Pharmazie, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Hessen, GermanyThe sodium-activated potassium channel Slack (K<sub>Na</sub>1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (I<sub>KNa</sub>) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated I<sub>KNa</sub> in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated I<sub>KNa</sub> may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.https://www.mdpi.com/1422-0067/22/1/405SlackP2X3dorsal root ganglianeuropathic painmice
collection DOAJ
language English
format Article
sources DOAJ
author Ruirui Lu
Katharina Metzner
Fangyuan Zhou
Cathrin Flauaus
Annika Balzulat
Patrick Engel
Jonas Petersen
Rebekka Ehinger
Anne Bausch
Peter Ruth
Robert Lukowski
Achim Schmidtko
spellingShingle Ruirui Lu
Katharina Metzner
Fangyuan Zhou
Cathrin Flauaus
Annika Balzulat
Patrick Engel
Jonas Petersen
Rebekka Ehinger
Anne Bausch
Peter Ruth
Robert Lukowski
Achim Schmidtko
Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain Processing
International Journal of Molecular Sciences
Slack
P2X3
dorsal root ganglia
neuropathic pain
mice
author_facet Ruirui Lu
Katharina Metzner
Fangyuan Zhou
Cathrin Flauaus
Annika Balzulat
Patrick Engel
Jonas Petersen
Rebekka Ehinger
Anne Bausch
Peter Ruth
Robert Lukowski
Achim Schmidtko
author_sort Ruirui Lu
title Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain Processing
title_short Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain Processing
title_full Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain Processing
title_fullStr Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain Processing
title_full_unstemmed Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain Processing
title_sort functional coupling of slack channels and p2x3 receptors contributes to neuropathic pain processing
publisher MDPI AG
series International Journal of Molecular Sciences
issn 1661-6596
1422-0067
publishDate 2021-01-01
description The sodium-activated potassium channel Slack (K<sub>Na</sub>1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (I<sub>KNa</sub>) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated I<sub>KNa</sub> in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated I<sub>KNa</sub> may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.
topic Slack
P2X3
dorsal root ganglia
neuropathic pain
mice
url https://www.mdpi.com/1422-0067/22/1/405
work_keys_str_mv AT ruiruilu functionalcouplingofslackchannelsandp2x3receptorscontributestoneuropathicpainprocessing
AT katharinametzner functionalcouplingofslackchannelsandp2x3receptorscontributestoneuropathicpainprocessing
AT fangyuanzhou functionalcouplingofslackchannelsandp2x3receptorscontributestoneuropathicpainprocessing
AT cathrinflauaus functionalcouplingofslackchannelsandp2x3receptorscontributestoneuropathicpainprocessing
AT annikabalzulat functionalcouplingofslackchannelsandp2x3receptorscontributestoneuropathicpainprocessing
AT patrickengel functionalcouplingofslackchannelsandp2x3receptorscontributestoneuropathicpainprocessing
AT jonaspetersen functionalcouplingofslackchannelsandp2x3receptorscontributestoneuropathicpainprocessing
AT rebekkaehinger functionalcouplingofslackchannelsandp2x3receptorscontributestoneuropathicpainprocessing
AT annebausch functionalcouplingofslackchannelsandp2x3receptorscontributestoneuropathicpainprocessing
AT peterruth functionalcouplingofslackchannelsandp2x3receptorscontributestoneuropathicpainprocessing
AT robertlukowski functionalcouplingofslackchannelsandp2x3receptorscontributestoneuropathicpainprocessing
AT achimschmidtko functionalcouplingofslackchannelsandp2x3receptorscontributestoneuropathicpainprocessing
_version_ 1724351209225060352