Summary: | In this review, after a general introduction to the effective string theory (EST) description of confinement in pure gauge theories, we discuss the behaviour of EST as the temperature is increased. We show that, as the deconfinement point is approached from below, several universal features of confining gauge theories, like the ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>c</mi></msub><mo>/</mo><msqrt><msub><mi>σ</mi><mn>0</mn></msub></msqrt></mrow></semantics></math></inline-formula>, the linear increase of the squared width of the flux tube with the interquark distance, or the temperature dependence of the interquark potential, can be accurately predicted by the effective string. Moreover, in the vicinity of the deconfinement point the EST behaviour turns out to be in good agreement with what was predicted by conformal invariance or by dimensional reduction, thus further supporting the validity of an EST approach to confinement.
|