Identified charged hadron production in pp, p−Pb and Pb−Pb collisions at LHC energies with ALICE

The ALICE detector is dedicated to the study of strongly interacting matter in the extremely high temperature and energy density conditions reached in relativistic heavy-ions collisions at the LHC. ALICE has unique particle identification (PID) capabilities among the LHC experiments thanks to the us...

Full description

Bibliographic Details
Main Author: Volpe Giacomo
Format: Article
Language:English
Published: EDP Sciences 2015-01-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/20159504075
Description
Summary:The ALICE detector is dedicated to the study of strongly interacting matter in the extremely high temperature and energy density conditions reached in relativistic heavy-ions collisions at the LHC. ALICE has unique particle identification (PID) capabilities among the LHC experiments thanks to the use of the combination of different PID techniques, i.e. energy loss and time of flight measurements, Cherenkov and transition radiation detection, calorimetry and topological ID. The latest results on charged pions, kaons and (anti)protons transverse momentum (pT) spectra, ratios and integrated yields, measured in pp collisions at √s = 7 TeV and √s = 2.76 TeV, Pb−Pb collisions at √sNN = 2.76 TeV and p-Pb collisions at √sNN = 5.02 TeV, will be presented. The nuclear modification factors as a function of pT, for Pb−Pb and p−Pb interactions, will be shown. The results from different colliding systems will be compared. These will also be compared with calculations from hydrodynamical and statistical hadronization models.
ISSN:2100-014X