Energy-Saving Production Scheduling in a Single-Machine Manufacturing System by Improved Particle Swarm Optimization

A single-machine scheduling problem that minimizes the total weighted tardiness with energy consumption constraints in the actual production environment is studied in this paper. Based on the properties of the problem, an improved particle swarm optimization (PSO) algorithm embedded with a local sea...

Full description

Bibliographic Details
Main Authors: Qingquan Jiang, Xiaoya Liao, Rui Zhang, Qiaozhen Lin
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2020/8870917
Description
Summary:A single-machine scheduling problem that minimizes the total weighted tardiness with energy consumption constraints in the actual production environment is studied in this paper. Based on the properties of the problem, an improved particle swarm optimization (PSO) algorithm embedded with a local search strategy (PSO-LS) is designed to solve this problem. To evaluate the algorithm, some computational experiments are carried out using PSO-LS, basic PSO, and a genetic algorithm (GA). Before the comparison experiment, the Taguchi method is used to select appropriate parameter values for these three algorithms since heuristic algorithms rely heavily on their parameters. The experimental results show that the improved PSO-LS algorithm has considerable advantages over the basic PSO and GA, especially for large-scale problems.
ISSN:1024-123X
1563-5147