Existence of positive solutions for semilinear elliptic systems with indefinite weight

This article concerns the existence of positive solutions of semilinear elliptic system $$displaylines{ -Delta u=lambda a(x)f(v),quadhbox{in }Omega,cr -Delta v=lambda b(x)g(u),quadhbox{in }Omega,cr u=0=v,quad hbox{on } partialOmega, }$$ where $Omegasubseteqmathbb{R}^N (Ngeq1)$ is a bounded d...

Full description

Bibliographic Details
Main Author: Ruipeng Chen
Format: Article
Language:English
Published: Texas State University 2011-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2011/164/abstr.html
Description
Summary:This article concerns the existence of positive solutions of semilinear elliptic system $$displaylines{ -Delta u=lambda a(x)f(v),quadhbox{in }Omega,cr -Delta v=lambda b(x)g(u),quadhbox{in }Omega,cr u=0=v,quad hbox{on } partialOmega, }$$ where $Omegasubseteqmathbb{R}^N (Ngeq1)$ is a bounded domain with a smooth boundary $partialOmega$ and $lambda$ is a positive parameter. $a, b:Omegaomathbb{R}$ are sign-changing functions. $f, g:[0,infty)omathbb{R}$ are continuous with $f(0)>0$, $g(0)>0$. By applying Leray-Schauder fixed point theorem, we establish the existence of positive solutions for $lambda$ sufficiently small.
ISSN:1072-6691