Generalized Minimum Variance Control for MDOF Structures under Earthquake Excitation
Control of a multi-degree-of-freedom structural system under earthquake excitation is investigated in this paper. The control approach based on the Generalized Minimum Variance (GMV) algorithm is developed and presented. Our approach is a generalization to multivariable systems of the GMV strategy d...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Journal of Control Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2016/7458654 |
Summary: | Control of a multi-degree-of-freedom structural system under earthquake excitation is investigated in this paper. The control approach based on the Generalized Minimum Variance (GMV) algorithm is developed and presented. Our approach is a generalization to multivariable systems of the GMV strategy designed initially for single-input-single-output (SISO) systems. Kanai-Tajimi and Clough-Penzien models are used to generate the seismic excitations. Those models are calculated using the specific soil parameters. Simulation tests using a 3DOF structure are performed and show the effectiveness of the control method. |
---|---|
ISSN: | 1687-5249 1687-5257 |