Contribution of dark septate fungi to the nutrient uptake and growth of rice plants

ABSTRACT The use of dark septate fungi (DSE) to promote plant growth can be beneficial to agriculture, and these organisms are important allies in the search for sustainable agriculture practices. This study investigates the contribution of dark septate fungi to the absorption of nutrients by rice p...

Full description

Bibliographic Details
Main Authors: Carlos Vergara, Karla Emanuelle Campos Araujo, Luiziene Soares Alves, Sônia Regina de Souza, Leandro Azevedo Santos, Claudete Santa-Catarina, Krisle da Silva, Gilmara Maria Duarte Pereira, Gustavo Ribeiro Xavier, Jerri Édson Zilli
Format: Article
Language:English
Published: Sociedade Brasileira de Microbiologia
Series:Brazilian Journal of Microbiology
Subjects:
DSE
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822018000100067&lng=en&tlng=en
Description
Summary:ABSTRACT The use of dark septate fungi (DSE) to promote plant growth can be beneficial to agriculture, and these organisms are important allies in the search for sustainable agriculture practices. This study investigates the contribution of dark septate fungi to the absorption of nutrients by rice plants and their ensuing growth. Four dark septate fungi isolates that were identified by Internal transcribed spacer phylogeny were inoculated in rice seeds (Cv. Piauí). The resulting root colonization was estimated and the kinetic parameters Vmax and Km were calculated from the nitrate contents of the nutrient solution. The macronutrient levels in the shoots, and the NO3--N, NH4+-N, free amino-N and soluble sugars in the roots, sheathes and leaves were measured. The rice roots were significantly colonized by all of the fungi, but in particular, isolate A103 increased the fresh and dry biomass of the shoots and the number of tillers per plant, amino-N, and soluble sugars as well as the N, P, K, Mg and S contents in comparison with the control treatment. When inoculated with isolates A103 and A101, the plants presented lower Km values, indicating affinity increases for NO3--N absorption. Therefore, the A103 Pleosporales fungus presented the highest potential for the promotion of rice plant growth, increasing the tillering and nutrients uptake, especially N (due to an enhanced affinity for N uptake) and P.
ISSN:1678-4405