HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE

Classical algorithms for maximum power point tracking (MPPT) are not difficult to implement and provide accurate enough results and speed under normal conditions. Under partial shading or other multiple local maximum power point (MPP) conditions they are missing the global MPP. This paper propose...

Full description

Bibliographic Details
Main Author: Sabin POPESCU
Format: Article
Language:English
Published: Academica Brancusi 2018-05-01
Series:Fiabilitate şi Durabilitate
Subjects:
Online Access:http://www.utgjiu.ro/rev_mec/mecanica/pdf/2018-01/80_Sabin%20POPESCU%20-%20HYBRID%20GENETIC%20ALGORITHM%20VERSUS%20PSO%20FOR%20TRACKING%20THE%20MPP%20OF%20PV%20MODULE.pdf
id doaj-2a0db71dbee84cdf90c5c030e5ef046c
record_format Article
spelling doaj-2a0db71dbee84cdf90c5c030e5ef046c2020-11-24T21:08:00ZengAcademica BrancusiFiabilitate şi Durabilitate1844-640X1844-640X2018-05-01121460469HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULESabin POPESCU0BOC Group, Operngasse 20b, Vienna, AustriaClassical algorithms for maximum power point tracking (MPPT) are not difficult to implement and provide accurate enough results and speed under normal conditions. Under partial shading or other multiple local maximum power point (MPP) conditions they are missing the global MPP. This paper proposes a hybrid genetic algorithm (HGA) for tracking the maximum power point when multiple local maximum power points can be found and a comparison with a biological algorithm for tracking the maximum power point: Particle Swarm Optimization (PSO).http://www.utgjiu.ro/rev_mec/mecanica/pdf/2018-01/80_Sabin%20POPESCU%20-%20HYBRID%20GENETIC%20ALGORITHM%20VERSUS%20PSO%20FOR%20TRACKING%20THE%20MPP%20OF%20PV%20MODULE.pdfphotovoltaic systemMPPToptimization methodhybrid genetic algorithm
collection DOAJ
language English
format Article
sources DOAJ
author Sabin POPESCU
spellingShingle Sabin POPESCU
HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE
Fiabilitate şi Durabilitate
photovoltaic system
MPPT
optimization method
hybrid genetic algorithm
author_facet Sabin POPESCU
author_sort Sabin POPESCU
title HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE
title_short HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE
title_full HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE
title_fullStr HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE
title_full_unstemmed HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE
title_sort hybrid genetic algorithm versus pso for tracking the mpp of pv module
publisher Academica Brancusi
series Fiabilitate şi Durabilitate
issn 1844-640X
1844-640X
publishDate 2018-05-01
description Classical algorithms for maximum power point tracking (MPPT) are not difficult to implement and provide accurate enough results and speed under normal conditions. Under partial shading or other multiple local maximum power point (MPP) conditions they are missing the global MPP. This paper proposes a hybrid genetic algorithm (HGA) for tracking the maximum power point when multiple local maximum power points can be found and a comparison with a biological algorithm for tracking the maximum power point: Particle Swarm Optimization (PSO).
topic photovoltaic system
MPPT
optimization method
hybrid genetic algorithm
url http://www.utgjiu.ro/rev_mec/mecanica/pdf/2018-01/80_Sabin%20POPESCU%20-%20HYBRID%20GENETIC%20ALGORITHM%20VERSUS%20PSO%20FOR%20TRACKING%20THE%20MPP%20OF%20PV%20MODULE.pdf
work_keys_str_mv AT sabinpopescu hybridgeneticalgorithmversuspsofortrackingthemppofpvmodule
_version_ 1716761262276214784