HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE
Classical algorithms for maximum power point tracking (MPPT) are not difficult to implement and provide accurate enough results and speed under normal conditions. Under partial shading or other multiple local maximum power point (MPP) conditions they are missing the global MPP. This paper propose...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Academica Brancusi
2018-05-01
|
Series: | Fiabilitate şi Durabilitate |
Subjects: | |
Online Access: | http://www.utgjiu.ro/rev_mec/mecanica/pdf/2018-01/80_Sabin%20POPESCU%20-%20HYBRID%20GENETIC%20ALGORITHM%20VERSUS%20PSO%20FOR%20TRACKING%20THE%20MPP%20OF%20PV%20MODULE.pdf |
id |
doaj-2a0db71dbee84cdf90c5c030e5ef046c |
---|---|
record_format |
Article |
spelling |
doaj-2a0db71dbee84cdf90c5c030e5ef046c2020-11-24T21:08:00ZengAcademica BrancusiFiabilitate şi Durabilitate1844-640X1844-640X2018-05-01121460469HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULESabin POPESCU0BOC Group, Operngasse 20b, Vienna, AustriaClassical algorithms for maximum power point tracking (MPPT) are not difficult to implement and provide accurate enough results and speed under normal conditions. Under partial shading or other multiple local maximum power point (MPP) conditions they are missing the global MPP. This paper proposes a hybrid genetic algorithm (HGA) for tracking the maximum power point when multiple local maximum power points can be found and a comparison with a biological algorithm for tracking the maximum power point: Particle Swarm Optimization (PSO).http://www.utgjiu.ro/rev_mec/mecanica/pdf/2018-01/80_Sabin%20POPESCU%20-%20HYBRID%20GENETIC%20ALGORITHM%20VERSUS%20PSO%20FOR%20TRACKING%20THE%20MPP%20OF%20PV%20MODULE.pdfphotovoltaic systemMPPToptimization methodhybrid genetic algorithm |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sabin POPESCU |
spellingShingle |
Sabin POPESCU HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE Fiabilitate şi Durabilitate photovoltaic system MPPT optimization method hybrid genetic algorithm |
author_facet |
Sabin POPESCU |
author_sort |
Sabin POPESCU |
title |
HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE |
title_short |
HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE |
title_full |
HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE |
title_fullStr |
HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE |
title_full_unstemmed |
HYBRID GENETIC ALGORITHM VERSUS PSO FOR TRACKING THE MPP OF PV MODULE |
title_sort |
hybrid genetic algorithm versus pso for tracking the mpp of pv module |
publisher |
Academica Brancusi |
series |
Fiabilitate şi Durabilitate |
issn |
1844-640X 1844-640X |
publishDate |
2018-05-01 |
description |
Classical algorithms for maximum power point tracking (MPPT) are not difficult
to implement and provide accurate enough results and speed under normal conditions. Under
partial shading or other multiple local maximum power point (MPP) conditions they are missing
the global MPP. This paper proposes a hybrid genetic algorithm (HGA) for tracking the maximum
power point when multiple local maximum power points can be found and a comparison with a
biological algorithm for tracking the maximum power point: Particle Swarm Optimization (PSO). |
topic |
photovoltaic system MPPT optimization method hybrid genetic algorithm |
url |
http://www.utgjiu.ro/rev_mec/mecanica/pdf/2018-01/80_Sabin%20POPESCU%20-%20HYBRID%20GENETIC%20ALGORITHM%20VERSUS%20PSO%20FOR%20TRACKING%20THE%20MPP%20OF%20PV%20MODULE.pdf |
work_keys_str_mv |
AT sabinpopescu hybridgeneticalgorithmversuspsofortrackingthemppofpvmodule |
_version_ |
1716761262276214784 |