Cardioprotective effects of PKG activation by soluble GC activator, BAY 60-2770, in ischemia-reperfusion-injured rat hearts.

Soluble guanylate cyclase (sGC) has been suggested as a therapeutic target for cardiac ischemia-reperfusion (IR) injury. Until now, the molecular mechanism of BAY 60-2770, a sGC activator, in cardiac IR injury has not been assessed. To identify the cardioprotective effects of BAY 60-2770 in IR-injur...

Full description

Bibliographic Details
Main Authors: Kyung Hye Lee, So-Ra Lee, Haneul Cho, Jong Shin Woo, Jung Hee Kang, Yun-Mi Jeong, Xian Wu Cheng, Woo-Shik Kim, Weon Kim
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5495340?pdf=render
id doaj-2a01971526734fa3b93ccb78ed70cd90
record_format Article
spelling doaj-2a01971526734fa3b93ccb78ed70cd902020-11-24T21:50:21ZengPublic Library of Science (PLoS)PLoS ONE1932-62032017-01-01127e018020710.1371/journal.pone.0180207Cardioprotective effects of PKG activation by soluble GC activator, BAY 60-2770, in ischemia-reperfusion-injured rat hearts.Kyung Hye LeeSo-Ra LeeHaneul ChoJong Shin WooJung Hee KangYun-Mi JeongXian Wu ChengWoo-Shik KimWeon KimSoluble guanylate cyclase (sGC) has been suggested as a therapeutic target for cardiac ischemia-reperfusion (IR) injury. Until now, the molecular mechanism of BAY 60-2770, a sGC activator, in cardiac IR injury has not been assessed. To identify the cardioprotective effects of BAY 60-2770 in IR-injured rat hearts, IR injury was established by occlusion of LAD for 40 min and reperfusion for 7 days, and the effects of BAY 60-2770 on myocardial protection were assessed by echocardiography and TTC staining. 5 nM and 5 μM of BAY 60-2770 were perfused into isolated rat hearts in a Langendorff system. After 10- or 30-min reperfusion with BAY 60-2770, cGMP and cAMP concentrations and PKG activation status were examined. Hearts were also perfused with 1 μM KT5823 or 100 μM 5-HD in conjunction with 5 nM Bay 60-2770 to evaluate the protective role of PKG. Mitochondrial oxidative stress was investigated under hypoxia-reoxygenation in H9c2 cells. In IR-injured rat hearts, BAY 60-2770 oral administration reduced infarct size by TTC staining and improved left ventricular function by echocardiography. Tissue samples from BAY 60-2770-perfused hearts had approximately two-fold higher cGMP levels. BAY 60-2770 increased PKG activity in the myocardium, and the reduced infarct area by BAY 60-2770 was abrogated by KT-5823 in isolated myocardium. In H9c2 cardiac myoblasts, hypoxia-reoxygenation-mediated mitochondrial ROS generation was diminished with BAY 60-2770 treatment, but was recovered by pretreatment with KT-5823. BAY 60-2770 demonstrated a protective effect against cardiac IR injury via mitoKATP opening and decreased mitoROS by PKG activation. BAY 60-2770 has a protective effect against cardiac IR injury via mitoKATP opening and decreased mitoROS by PKG activation. These results demonstrated that BAY 60-2770 may be used as a therapeutic agent for cardiac IR injury.http://europepmc.org/articles/PMC5495340?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Kyung Hye Lee
So-Ra Lee
Haneul Cho
Jong Shin Woo
Jung Hee Kang
Yun-Mi Jeong
Xian Wu Cheng
Woo-Shik Kim
Weon Kim
spellingShingle Kyung Hye Lee
So-Ra Lee
Haneul Cho
Jong Shin Woo
Jung Hee Kang
Yun-Mi Jeong
Xian Wu Cheng
Woo-Shik Kim
Weon Kim
Cardioprotective effects of PKG activation by soluble GC activator, BAY 60-2770, in ischemia-reperfusion-injured rat hearts.
PLoS ONE
author_facet Kyung Hye Lee
So-Ra Lee
Haneul Cho
Jong Shin Woo
Jung Hee Kang
Yun-Mi Jeong
Xian Wu Cheng
Woo-Shik Kim
Weon Kim
author_sort Kyung Hye Lee
title Cardioprotective effects of PKG activation by soluble GC activator, BAY 60-2770, in ischemia-reperfusion-injured rat hearts.
title_short Cardioprotective effects of PKG activation by soluble GC activator, BAY 60-2770, in ischemia-reperfusion-injured rat hearts.
title_full Cardioprotective effects of PKG activation by soluble GC activator, BAY 60-2770, in ischemia-reperfusion-injured rat hearts.
title_fullStr Cardioprotective effects of PKG activation by soluble GC activator, BAY 60-2770, in ischemia-reperfusion-injured rat hearts.
title_full_unstemmed Cardioprotective effects of PKG activation by soluble GC activator, BAY 60-2770, in ischemia-reperfusion-injured rat hearts.
title_sort cardioprotective effects of pkg activation by soluble gc activator, bay 60-2770, in ischemia-reperfusion-injured rat hearts.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2017-01-01
description Soluble guanylate cyclase (sGC) has been suggested as a therapeutic target for cardiac ischemia-reperfusion (IR) injury. Until now, the molecular mechanism of BAY 60-2770, a sGC activator, in cardiac IR injury has not been assessed. To identify the cardioprotective effects of BAY 60-2770 in IR-injured rat hearts, IR injury was established by occlusion of LAD for 40 min and reperfusion for 7 days, and the effects of BAY 60-2770 on myocardial protection were assessed by echocardiography and TTC staining. 5 nM and 5 μM of BAY 60-2770 were perfused into isolated rat hearts in a Langendorff system. After 10- or 30-min reperfusion with BAY 60-2770, cGMP and cAMP concentrations and PKG activation status were examined. Hearts were also perfused with 1 μM KT5823 or 100 μM 5-HD in conjunction with 5 nM Bay 60-2770 to evaluate the protective role of PKG. Mitochondrial oxidative stress was investigated under hypoxia-reoxygenation in H9c2 cells. In IR-injured rat hearts, BAY 60-2770 oral administration reduced infarct size by TTC staining and improved left ventricular function by echocardiography. Tissue samples from BAY 60-2770-perfused hearts had approximately two-fold higher cGMP levels. BAY 60-2770 increased PKG activity in the myocardium, and the reduced infarct area by BAY 60-2770 was abrogated by KT-5823 in isolated myocardium. In H9c2 cardiac myoblasts, hypoxia-reoxygenation-mediated mitochondrial ROS generation was diminished with BAY 60-2770 treatment, but was recovered by pretreatment with KT-5823. BAY 60-2770 demonstrated a protective effect against cardiac IR injury via mitoKATP opening and decreased mitoROS by PKG activation. BAY 60-2770 has a protective effect against cardiac IR injury via mitoKATP opening and decreased mitoROS by PKG activation. These results demonstrated that BAY 60-2770 may be used as a therapeutic agent for cardiac IR injury.
url http://europepmc.org/articles/PMC5495340?pdf=render
work_keys_str_mv AT kyunghyelee cardioprotectiveeffectsofpkgactivationbysolublegcactivatorbay602770inischemiareperfusioninjuredrathearts
AT soralee cardioprotectiveeffectsofpkgactivationbysolublegcactivatorbay602770inischemiareperfusioninjuredrathearts
AT haneulcho cardioprotectiveeffectsofpkgactivationbysolublegcactivatorbay602770inischemiareperfusioninjuredrathearts
AT jongshinwoo cardioprotectiveeffectsofpkgactivationbysolublegcactivatorbay602770inischemiareperfusioninjuredrathearts
AT jungheekang cardioprotectiveeffectsofpkgactivationbysolublegcactivatorbay602770inischemiareperfusioninjuredrathearts
AT yunmijeong cardioprotectiveeffectsofpkgactivationbysolublegcactivatorbay602770inischemiareperfusioninjuredrathearts
AT xianwucheng cardioprotectiveeffectsofpkgactivationbysolublegcactivatorbay602770inischemiareperfusioninjuredrathearts
AT wooshikkim cardioprotectiveeffectsofpkgactivationbysolublegcactivatorbay602770inischemiareperfusioninjuredrathearts
AT weonkim cardioprotectiveeffectsofpkgactivationbysolublegcactivatorbay602770inischemiareperfusioninjuredrathearts
_version_ 1725884598808739840