An efficient ORF selection system for DNA fragment libraries based on split beta-lactamase complementation.

PCR-based amplification of annotated genes has allowed construction of expression clones at genome-scale using classical and recombination-based cloning technologies. However, genome-scale expression and purification of proteins for down-stream applications is often limited by challenges such as poo...

Full description

Bibliographic Details
Main Authors: Vaishali Verma, Gopal Joshi, Amita Gupta, Vijay K Chaudhary
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0235853
Description
Summary:PCR-based amplification of annotated genes has allowed construction of expression clones at genome-scale using classical and recombination-based cloning technologies. However, genome-scale expression and purification of proteins for down-stream applications is often limited by challenges such as poor expression, low solubility, large size of multi-domain proteins, etc. Alternatively, DNA fragment libraries in expression vectors can serve as the source of protein fragments with each fragment encompassing a function of its whole protein counterpart. However, the random DNA fragmentation and cloning result in only 1 out of 18 clones being in the correct open-reading frame (ORF), thus, reducing the overall efficiency of the system. This necessitates the selection of correct ORF before expressing the protein fragments. This paper describes a highly efficient ORF selection system for DNA fragment libraries, which is based on split beta-lactamase protein fragment complementation. The system has been designed to allow seamless transfer of selected DNA fragment libraries into any downstream vector systems using a restriction enzyme-free cloning strategy. The strategy has been applied for the selection of ORF using model constructs to show near 100% selection of the clone encoding correct ORF. The system has been further validated by construction of an ORF-selected DNA fragment library of 30 genes of M. tuberculosis. Further, we have successfully demonstrated the cytosolic expression of ORF-selected protein fragments in E. coli.
ISSN:1932-6203