A magnetic glass state over the first-order ferromagnetic-to-antiferromagnetic transition in FeRh film
The intermetallic FeRh system has displayed tremendous fascination to investigators due to its remarkable physical properties and potential applications. Here we synthesized near-equiatomic FeRh films on MgO (001) substrate by magnetron co-sputtering of Fe and Rh, and our results revealed a magnetic...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2017-09-01
|
Series: | Materials Research Letters |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/21663831.2017.1284697 |
Summary: | The intermetallic FeRh system has displayed tremendous fascination to investigators due to its remarkable physical properties and potential applications. Here we synthesized near-equiatomic FeRh films on MgO (001) substrate by magnetron co-sputtering of Fe and Rh, and our results revealed a magnetic glass (MG) state existing after field cooling to low temperature. The MG state is nonequilibrium with a configuration of metastable supercooled ferromagnetic (FM) and equilibrium antiferromagnetic (AFM) phases, and arises from a kinetic arrest of the first-order FM–AFM phase transition. Our finding is beneficial to a better understanding of the underlying mechanism of the FeRh phase transition. |
---|---|
ISSN: | 2166-3831 |