A magnetic glass state over the first-order ferromagnetic-to-antiferromagnetic transition in FeRh film

The intermetallic FeRh system has displayed tremendous fascination to investigators due to its remarkable physical properties and potential applications. Here we synthesized near-equiatomic FeRh films on MgO (001) substrate by magnetron co-sputtering of Fe and Rh, and our results revealed a magnetic...

Full description

Bibliographic Details
Main Authors: Jiahui Chen, Ya Gao, Liang Wu, Jing Ma, Ce-Wen Nan
Format: Article
Language:English
Published: Taylor & Francis Group 2017-09-01
Series:Materials Research Letters
Subjects:
Online Access:http://dx.doi.org/10.1080/21663831.2017.1284697
Description
Summary:The intermetallic FeRh system has displayed tremendous fascination to investigators due to its remarkable physical properties and potential applications. Here we synthesized near-equiatomic FeRh films on MgO (001) substrate by magnetron co-sputtering of Fe and Rh, and our results revealed a magnetic glass (MG) state existing after field cooling to low temperature. The MG state is nonequilibrium with a configuration of metastable supercooled ferromagnetic (FM) and equilibrium antiferromagnetic (AFM) phases, and arises from a kinetic arrest of the first-order FM–AFM phase transition. Our finding is beneficial to a better understanding of the underlying mechanism of the FeRh phase transition.
ISSN:2166-3831