Existence ofixed points for pointwise eventually asymptotically nonexpansive mappings

Kirk introduced the notion of pointwise eventually asymptotically non-expansive mappings and proved that uniformly convex Banach spaces have the fixed point property for pointwise eventually asymptotically non expansive maps. Further, Kirk raised the following question: “Does a Banach space X have t...

Full description

Bibliographic Details
Main Authors: M. Radhakrishnan, S. Rajesh
Format: Article
Language:English
Published: Universitat Politècnica de València 2019-04-01
Series:Applied General Topology
Subjects:
Online Access:https://polipapers.upv.es/index.php/AGT/article/view/10360
Description
Summary:Kirk introduced the notion of pointwise eventually asymptotically non-expansive mappings and proved that uniformly convex Banach spaces have the fixed point property for pointwise eventually asymptotically non expansive maps. Further, Kirk raised the following question: “Does a Banach space X have the fixed point property for pointwise eventually asymptotically nonexpansive mappings when ever X has the fixed point property for nonexpansive mappings?”. In this paper, we prove that a Banach space X has the fixed point property for pointwise eventually asymptotically nonexpansive maps if X  has uniform normal structure or X is uniformly convex in every direction with the Maluta constant D(X) < 1. Also, we study the asymptotic behavior of the sequence {Tnx} for a pointwise eventually asymptotically nonexpansive map T defined on a nonempty weakly compact convex subset K of a Banach space X whenever X satisfies the uniform Opial condition or X has a weakly continuous duality map.
ISSN:1576-9402
1989-4147