Existence ofixed points for pointwise eventually asymptotically nonexpansive mappings
Kirk introduced the notion of pointwise eventually asymptotically non-expansive mappings and proved that uniformly convex Banach spaces have the fixed point property for pointwise eventually asymptotically non expansive maps. Further, Kirk raised the following question: “Does a Banach space X have t...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitat Politècnica de València
2019-04-01
|
Series: | Applied General Topology |
Subjects: | |
Online Access: | https://polipapers.upv.es/index.php/AGT/article/view/10360 |
Summary: | Kirk introduced the notion of pointwise eventually asymptotically non-expansive mappings and proved that uniformly convex Banach spaces have the fixed point property for pointwise eventually asymptotically non expansive maps. Further, Kirk raised the following question: “Does a Banach space X have the fixed point property for pointwise eventually asymptotically nonexpansive mappings when ever X has the fixed point property for nonexpansive mappings?”. In this paper, we prove that a Banach space X has the fixed point property for pointwise eventually asymptotically nonexpansive maps if X has uniform normal structure or X is uniformly convex in every direction with the Maluta constant D(X) < 1. Also, we study the asymptotic behavior of the sequence {Tnx} for a pointwise eventually asymptotically nonexpansive map T defined on a nonempty weakly compact convex subset K of a Banach space X whenever X satisfies the uniform Opial condition or X has a weakly continuous duality map. |
---|---|
ISSN: | 1576-9402 1989-4147 |