Green synthesis of gold nanoparticles using Acai berry and Elderberry extracts and investigation of their effect on prostate and pancreatic cancer cells

Green nanotechnology has drawn major attention because of its ecofriendly and economical biosynthetic protocols. Synthesis of gold nanoparticles (AuNPs) using plant secondary metabolites is considered as a safer and cheaper option. Plants contain phytochemicals that has been used traditionally for t...

Full description

Bibliographic Details
Main Authors: Nicole Remaliah Samantha Sibuyi, Velaphi Clement Thipe, Kiandokht Panjtan-Amiri, Mervin Meyer, Kattesh V Katti
Format: Article
Language:English
Published: SAGE Publishing 2021-02-01
Series:Nanobiomedicine
Online Access:https://doi.org/10.1177/1849543521995310
Description
Summary:Green nanotechnology has drawn major attention because of its ecofriendly and economical biosynthetic protocols. Synthesis of gold nanoparticles (AuNPs) using plant secondary metabolites is considered as a safer and cheaper option. Plants contain phytochemicals that has been used traditionally for treatment of various diseases, and proved to be non-toxic to healthy tissues. These phytochemicals play an important role in bio-reduction processes as reducing and stabilizing agents, and renders NPs selective toxicity towards diseased tissues. The study reports on the synthesis of AuNPs using Acai berry (AB) and Elderberry (EB) extracts and their anti-cancer properties. Formation of berry-AuNPs was confirmed through measurement of physico-chemical properties. The stability of the AuNPs was tested in biocompatible solutions. Anti-cancer activity of berry extracts and AuNPs was evaluated on the prostate (PC-3) and pancreatic (Panc-1) cancer cells. The berry extracts did not show toxicity to the cells, except for AB extracts on PC-3 cells at higher concentrations. The berry-AuNPs showed potential anti-cancer activities, and these effects could be further exploited for treatment of both the prostate and pancreatic cancers. Further studies are required to study the NP mechanism of action and specificity, as well as identify the phytochemicals involved in the synthesis of AuNPs.
ISSN:1849-5435