Physiomorphology of Soybean as Affected by Drought Stress and Nitrogen Application

Drought periods are predicted to increase in the future, putting the production of sensitive crops under serious hazards. Soybean, as a legume, is capable of partly achieving its nitrogen demands through the N2-fixation process; however, this process is inhibited by drought stress conditions. Moreov...

Full description

Bibliographic Details
Main Authors: Oqba Basal, András Szabó
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Scientifica
Online Access:http://dx.doi.org/10.1155/2020/6093836
Description
Summary:Drought periods are predicted to increase in the future, putting the production of sensitive crops under serious hazards. Soybean, as a legume, is capable of partly achieving its nitrogen demands through the N2-fixation process; however, this process is inhibited by drought stress conditions. Moreover, N2-fixation might not fulfill the total N demand for soybean plants, so supplemental N-fertilizer doses might be crucial. A 3-year experiment was carried out in Debrecen, Hungary, to investigate the effects of inoculation and N-fertilizer application on the physiomorphology of soybean (cv. Boglár) under both drought stress and irrigated conditions. Results showed that, regardless of inoculation, drought negatively affected plant height, LAI, SPAD, and, to a smaller extent, NDVI. On average, increasing N-fertilizer enhanced these traits accordingly. Inoculation, on the other hand, resulted in taller plants and higher LAI values, but lower SPAD values. It could be concluded that soybean’s physiomorphology is negatively influenced by drought stress and that N-fertilizer application can enhance it whether soybean plants suffer from drought stress conditions or not.
ISSN:2090-908X