A New Kernel Estimator of Copulas Based on Beta Quantile Transformations

A copula is a multivariate cumulative distribution function with marginal distributions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mi>n</mi><mi>i</mi><...

Full description

Bibliographic Details
Main Authors: Catalina Bolancé, Carlos Alberto Acuña
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/10/1078
id doaj-29ddaa5d466c4ff3ac44d6b9097eee27
record_format Article
spelling doaj-29ddaa5d466c4ff3ac44d6b9097eee272021-05-31T23:40:02ZengMDPI AGMathematics2227-73902021-05-0191078107810.3390/math9101078A New Kernel Estimator of Copulas Based on Beta Quantile TransformationsCatalina Bolancé0Carlos Alberto Acuña1Department of Econometrics, Riskcenter-IREA University of Barcelona, Av. Diagonal, 690, 08034 Barcelona, SpainDepartment of Econometrics, Riskcenter-IREA University of Barcelona, Av. Diagonal, 690, 08034 Barcelona, SpainA copula is a multivariate cumulative distribution function with marginal distributions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mi>n</mi><mi>i</mi><mi>f</mi><mi>o</mi><mi>r</mi><mi>m</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. For this reason, a classical kernel estimator does not work and this estimator needs to be corrected at boundaries, which increases the difficulty of the estimation and, in practice, the bias boundary correction might not provide the desired improvement. A quantile transformation of marginals is a way to improve the classical kernel approach. This paper shows a Beta quantile transformation to be optimal and analyses a kernel estimator based on this transformation. Furthermore, the basic properties that allow the new estimator to be used for inference on extreme value copulas are tested. The results of a simulation study show how the new nonparametric estimator improves alternative kernel estimators of copulas. We illustrate our proposal with a financial risk data analysis.https://www.mdpi.com/2227-7390/9/10/1078nonparametric copulakernel estimationBeta transformationextreme value copula
collection DOAJ
language English
format Article
sources DOAJ
author Catalina Bolancé
Carlos Alberto Acuña
spellingShingle Catalina Bolancé
Carlos Alberto Acuña
A New Kernel Estimator of Copulas Based on Beta Quantile Transformations
Mathematics
nonparametric copula
kernel estimation
Beta transformation
extreme value copula
author_facet Catalina Bolancé
Carlos Alberto Acuña
author_sort Catalina Bolancé
title A New Kernel Estimator of Copulas Based on Beta Quantile Transformations
title_short A New Kernel Estimator of Copulas Based on Beta Quantile Transformations
title_full A New Kernel Estimator of Copulas Based on Beta Quantile Transformations
title_fullStr A New Kernel Estimator of Copulas Based on Beta Quantile Transformations
title_full_unstemmed A New Kernel Estimator of Copulas Based on Beta Quantile Transformations
title_sort new kernel estimator of copulas based on beta quantile transformations
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2021-05-01
description A copula is a multivariate cumulative distribution function with marginal distributions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mi>n</mi><mi>i</mi><mi>f</mi><mi>o</mi><mi>r</mi><mi>m</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. For this reason, a classical kernel estimator does not work and this estimator needs to be corrected at boundaries, which increases the difficulty of the estimation and, in practice, the bias boundary correction might not provide the desired improvement. A quantile transformation of marginals is a way to improve the classical kernel approach. This paper shows a Beta quantile transformation to be optimal and analyses a kernel estimator based on this transformation. Furthermore, the basic properties that allow the new estimator to be used for inference on extreme value copulas are tested. The results of a simulation study show how the new nonparametric estimator improves alternative kernel estimators of copulas. We illustrate our proposal with a financial risk data analysis.
topic nonparametric copula
kernel estimation
Beta transformation
extreme value copula
url https://www.mdpi.com/2227-7390/9/10/1078
work_keys_str_mv AT catalinabolance anewkernelestimatorofcopulasbasedonbetaquantiletransformations
AT carlosalbertoacuna anewkernelestimatorofcopulasbasedonbetaquantiletransformations
AT catalinabolance newkernelestimatorofcopulasbasedonbetaquantiletransformations
AT carlosalbertoacuna newkernelestimatorofcopulasbasedonbetaquantiletransformations
_version_ 1721416912933486592