A New Kernel Estimator of Copulas Based on Beta Quantile Transformations
A copula is a multivariate cumulative distribution function with marginal distributions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mi>n</mi><mi>i</mi><...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/10/1078 |
id |
doaj-29ddaa5d466c4ff3ac44d6b9097eee27 |
---|---|
record_format |
Article |
spelling |
doaj-29ddaa5d466c4ff3ac44d6b9097eee272021-05-31T23:40:02ZengMDPI AGMathematics2227-73902021-05-0191078107810.3390/math9101078A New Kernel Estimator of Copulas Based on Beta Quantile TransformationsCatalina Bolancé0Carlos Alberto Acuña1Department of Econometrics, Riskcenter-IREA University of Barcelona, Av. Diagonal, 690, 08034 Barcelona, SpainDepartment of Econometrics, Riskcenter-IREA University of Barcelona, Av. Diagonal, 690, 08034 Barcelona, SpainA copula is a multivariate cumulative distribution function with marginal distributions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mi>n</mi><mi>i</mi><mi>f</mi><mi>o</mi><mi>r</mi><mi>m</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. For this reason, a classical kernel estimator does not work and this estimator needs to be corrected at boundaries, which increases the difficulty of the estimation and, in practice, the bias boundary correction might not provide the desired improvement. A quantile transformation of marginals is a way to improve the classical kernel approach. This paper shows a Beta quantile transformation to be optimal and analyses a kernel estimator based on this transformation. Furthermore, the basic properties that allow the new estimator to be used for inference on extreme value copulas are tested. The results of a simulation study show how the new nonparametric estimator improves alternative kernel estimators of copulas. We illustrate our proposal with a financial risk data analysis.https://www.mdpi.com/2227-7390/9/10/1078nonparametric copulakernel estimationBeta transformationextreme value copula |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Catalina Bolancé Carlos Alberto Acuña |
spellingShingle |
Catalina Bolancé Carlos Alberto Acuña A New Kernel Estimator of Copulas Based on Beta Quantile Transformations Mathematics nonparametric copula kernel estimation Beta transformation extreme value copula |
author_facet |
Catalina Bolancé Carlos Alberto Acuña |
author_sort |
Catalina Bolancé |
title |
A New Kernel Estimator of Copulas Based on Beta Quantile Transformations |
title_short |
A New Kernel Estimator of Copulas Based on Beta Quantile Transformations |
title_full |
A New Kernel Estimator of Copulas Based on Beta Quantile Transformations |
title_fullStr |
A New Kernel Estimator of Copulas Based on Beta Quantile Transformations |
title_full_unstemmed |
A New Kernel Estimator of Copulas Based on Beta Quantile Transformations |
title_sort |
new kernel estimator of copulas based on beta quantile transformations |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2021-05-01 |
description |
A copula is a multivariate cumulative distribution function with marginal distributions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mi>n</mi><mi>i</mi><mi>f</mi><mi>o</mi><mi>r</mi><mi>m</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. For this reason, a classical kernel estimator does not work and this estimator needs to be corrected at boundaries, which increases the difficulty of the estimation and, in practice, the bias boundary correction might not provide the desired improvement. A quantile transformation of marginals is a way to improve the classical kernel approach. This paper shows a Beta quantile transformation to be optimal and analyses a kernel estimator based on this transformation. Furthermore, the basic properties that allow the new estimator to be used for inference on extreme value copulas are tested. The results of a simulation study show how the new nonparametric estimator improves alternative kernel estimators of copulas. We illustrate our proposal with a financial risk data analysis. |
topic |
nonparametric copula kernel estimation Beta transformation extreme value copula |
url |
https://www.mdpi.com/2227-7390/9/10/1078 |
work_keys_str_mv |
AT catalinabolance anewkernelestimatorofcopulasbasedonbetaquantiletransformations AT carlosalbertoacuna anewkernelestimatorofcopulasbasedonbetaquantiletransformations AT catalinabolance newkernelestimatorofcopulasbasedonbetaquantiletransformations AT carlosalbertoacuna newkernelestimatorofcopulasbasedonbetaquantiletransformations |
_version_ |
1721416912933486592 |